Solve for r
r=-\frac{1}{2}=-0.5
Share
Copied to clipboard
8r-4=-6\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
8r-4=\frac{-6\times 4}{3}
Express -6\times \frac{4}{3} as a single fraction.
8r-4=\frac{-24}{3}
Multiply -6 and 4 to get -24.
8r-4=-8
Divide -24 by 3 to get -8.
8r=-8+4
Add 4 to both sides.
8r=-4
Add -8 and 4 to get -4.
r=\frac{-4}{8}
Divide both sides by 8.
r=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}