Solve for x
x=\frac{15}{16}=0.9375
Graph
Share
Copied to clipboard
45\times 2\times \frac{1}{3}-100\left(x-\frac{3}{2}\right)=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Multiply both sides of the equation by 60, the least common multiple of 4,3,2,5.
90\times \frac{1}{3}-100\left(x-\frac{3}{2}\right)=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Multiply 45 and 2 to get 90.
\frac{90}{3}-100\left(x-\frac{3}{2}\right)=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Multiply 90 and \frac{1}{3} to get \frac{90}{3}.
30-100\left(x-\frac{3}{2}\right)=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Divide 90 by 3 to get 30.
30-100x-100\left(-\frac{3}{2}\right)=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Use the distributive property to multiply -100 by x-\frac{3}{2}.
30-100x+\frac{-100\left(-3\right)}{2}=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Express -100\left(-\frac{3}{2}\right) as a single fraction.
30-100x+\frac{300}{2}=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Multiply -100 and -3 to get 300.
30-100x+150=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Divide 300 by 2 to get 150.
180-100x=36\left(1-\frac{2x}{5}\right)-30\left(2x-4\right)
Add 30 and 150 to get 180.
180-100x=36+36\left(-\frac{2x}{5}\right)-30\left(2x-4\right)
Use the distributive property to multiply 36 by 1-\frac{2x}{5}.
180-100x=36+\frac{-36\times 2x}{5}-30\left(2x-4\right)
Express 36\left(-\frac{2x}{5}\right) as a single fraction.
180-100x=36+\frac{-72x}{5}-30\left(2x-4\right)
Multiply -36 and 2 to get -72.
180-100x=36+\frac{-72x}{5}-60x+120
Use the distributive property to multiply -30 by 2x-4.
180-100x=156+\frac{-72x}{5}-60x
Add 36 and 120 to get 156.
180-100x-\frac{-72x}{5}=156-60x
Subtract \frac{-72x}{5} from both sides.
180-100x-\frac{-72x}{5}+60x=156
Add 60x to both sides.
180-40x-\frac{-72x}{5}=156
Combine -100x and 60x to get -40x.
-40x-\frac{-72x}{5}=156-180
Subtract 180 from both sides.
-40x-\frac{-72x}{5}=-24
Subtract 180 from 156 to get -24.
-200x+72x=-120
Multiply both sides of the equation by 5.
-128x=-120
Combine -200x and 72x to get -128x.
x=\frac{-120}{-128}
Divide both sides by -128.
x=\frac{15}{16}
Reduce the fraction \frac{-120}{-128} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}