Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}\left(\frac{4x}{1}-\frac{12}{1}\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Divide 1 by 1 to get 1.
\frac{3}{4}\left(4x-\frac{12}{1}\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Anything divided by one gives itself.
\frac{3}{4}\left(4x-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Anything divided by one gives itself.
\frac{3}{4}\times 4x+\frac{3}{4}\left(-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Use the distributive property to multiply \frac{3}{4} by 4x-12.
3x+\frac{3}{4}\left(-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Cancel out 4 and 4.
3x+\frac{3\left(-12\right)}{4}-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Express \frac{3}{4}\left(-12\right) as a single fraction.
3x+\frac{-36}{4}-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Multiply 3 and -12 to get -36.
3x-9-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Divide -36 by 4 to get -9.
3x-9-\frac{5}{3}\times \frac{3}{2}x-\frac{5}{3}
Use the distributive property to multiply -\frac{5}{3} by \frac{3}{2}x+1.
3x-9+\frac{-5\times 3}{3\times 2}x-\frac{5}{3}
Multiply -\frac{5}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
3x-9+\frac{-5}{2}x-\frac{5}{3}
Cancel out 3 in both numerator and denominator.
3x-9-\frac{5}{2}x-\frac{5}{3}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{1}{2}x-9-\frac{5}{3}
Combine 3x and -\frac{5}{2}x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{27}{3}-\frac{5}{3}
Convert -9 to fraction -\frac{27}{3}.
\frac{1}{2}x+\frac{-27-5}{3}
Since -\frac{27}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-\frac{32}{3}
Subtract 5 from -27 to get -32.
\frac{3}{4}\left(\frac{4x}{1}-\frac{12}{1}\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Divide 1 by 1 to get 1.
\frac{3}{4}\left(4x-\frac{12}{1}\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Anything divided by one gives itself.
\frac{3}{4}\left(4x-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Anything divided by one gives itself.
\frac{3}{4}\times 4x+\frac{3}{4}\left(-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Use the distributive property to multiply \frac{3}{4} by 4x-12.
3x+\frac{3}{4}\left(-12\right)-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Cancel out 4 and 4.
3x+\frac{3\left(-12\right)}{4}-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Express \frac{3}{4}\left(-12\right) as a single fraction.
3x+\frac{-36}{4}-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Multiply 3 and -12 to get -36.
3x-9-\frac{5}{3}\left(\frac{3}{2}x+1\right)
Divide -36 by 4 to get -9.
3x-9-\frac{5}{3}\times \frac{3}{2}x-\frac{5}{3}
Use the distributive property to multiply -\frac{5}{3} by \frac{3}{2}x+1.
3x-9+\frac{-5\times 3}{3\times 2}x-\frac{5}{3}
Multiply -\frac{5}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
3x-9+\frac{-5}{2}x-\frac{5}{3}
Cancel out 3 in both numerator and denominator.
3x-9-\frac{5}{2}x-\frac{5}{3}
Fraction \frac{-5}{2} can be rewritten as -\frac{5}{2} by extracting the negative sign.
\frac{1}{2}x-9-\frac{5}{3}
Combine 3x and -\frac{5}{2}x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{27}{3}-\frac{5}{3}
Convert -9 to fraction -\frac{27}{3}.
\frac{1}{2}x+\frac{-27-5}{3}
Since -\frac{27}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}x-\frac{32}{3}
Subtract 5 from -27 to get -32.