\frac { 3 } { 4 } ( \frac { 4 } { 3 } ( \frac { 1 } { 4 } x - 1 ) + 8 ] = \frac { 7 } { 3 } + \frac { 2 } { 3 } x
Solve for x
x = \frac{32}{5} = 6\frac{2}{5} = 6.4
Graph
Share
Copied to clipboard
\frac{3}{4}\left(\frac{4}{3}\times \frac{1}{4}x+\frac{4}{3}\left(-1\right)+8\right)=\frac{7}{3}+\frac{2}{3}x
Use the distributive property to multiply \frac{4}{3} by \frac{1}{4}x-1.
\frac{3}{4}\left(\frac{4\times 1}{3\times 4}x+\frac{4}{3}\left(-1\right)+8\right)=\frac{7}{3}+\frac{2}{3}x
Multiply \frac{4}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(\frac{1}{3}x+\frac{4}{3}\left(-1\right)+8\right)=\frac{7}{3}+\frac{2}{3}x
Cancel out 4 in both numerator and denominator.
\frac{3}{4}\left(\frac{1}{3}x-\frac{4}{3}+8\right)=\frac{7}{3}+\frac{2}{3}x
Multiply \frac{4}{3} and -1 to get -\frac{4}{3}.
\frac{3}{4}\left(\frac{1}{3}x-\frac{4}{3}+\frac{24}{3}\right)=\frac{7}{3}+\frac{2}{3}x
Convert 8 to fraction \frac{24}{3}.
\frac{3}{4}\left(\frac{1}{3}x+\frac{-4+24}{3}\right)=\frac{7}{3}+\frac{2}{3}x
Since -\frac{4}{3} and \frac{24}{3} have the same denominator, add them by adding their numerators.
\frac{3}{4}\left(\frac{1}{3}x+\frac{20}{3}\right)=\frac{7}{3}+\frac{2}{3}x
Add -4 and 24 to get 20.
\frac{3}{4}\times \frac{1}{3}x+\frac{3}{4}\times \frac{20}{3}=\frac{7}{3}+\frac{2}{3}x
Use the distributive property to multiply \frac{3}{4} by \frac{1}{3}x+\frac{20}{3}.
\frac{3\times 1}{4\times 3}x+\frac{3}{4}\times \frac{20}{3}=\frac{7}{3}+\frac{2}{3}x
Multiply \frac{3}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{3}{4}\times \frac{20}{3}=\frac{7}{3}+\frac{2}{3}x
Cancel out 3 in both numerator and denominator.
\frac{1}{4}x+\frac{3\times 20}{4\times 3}=\frac{7}{3}+\frac{2}{3}x
Multiply \frac{3}{4} times \frac{20}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{20}{4}=\frac{7}{3}+\frac{2}{3}x
Cancel out 3 in both numerator and denominator.
\frac{1}{4}x+5=\frac{7}{3}+\frac{2}{3}x
Divide 20 by 4 to get 5.
\frac{1}{4}x+5-\frac{2}{3}x=\frac{7}{3}
Subtract \frac{2}{3}x from both sides.
-\frac{5}{12}x+5=\frac{7}{3}
Combine \frac{1}{4}x and -\frac{2}{3}x to get -\frac{5}{12}x.
-\frac{5}{12}x=\frac{7}{3}-5
Subtract 5 from both sides.
-\frac{5}{12}x=\frac{7}{3}-\frac{15}{3}
Convert 5 to fraction \frac{15}{3}.
-\frac{5}{12}x=\frac{7-15}{3}
Since \frac{7}{3} and \frac{15}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}x=-\frac{8}{3}
Subtract 15 from 7 to get -8.
x=-\frac{8}{3}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{-8\left(-12\right)}{3\times 5}
Multiply -\frac{8}{3} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{96}{15}
Do the multiplications in the fraction \frac{-8\left(-12\right)}{3\times 5}.
x=\frac{32}{5}
Reduce the fraction \frac{96}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}