Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{3\left(-5\right)}{4\times 6}\left(-\frac{8}{9}\right)\times 2.4
Multiply \frac{3}{4} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{24}\left(-\frac{8}{9}\right)\times 2.4
Do the multiplications in the fraction \frac{3\left(-5\right)}{4\times 6}.
-\frac{5}{8}\left(-\frac{8}{9}\right)\times 2.4
Reduce the fraction \frac{-15}{24} to lowest terms by extracting and canceling out 3.
\frac{-5\left(-8\right)}{8\times 9}\times 2.4
Multiply -\frac{5}{8} times -\frac{8}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{40}{72}\times 2.4
Do the multiplications in the fraction \frac{-5\left(-8\right)}{8\times 9}.
\frac{5}{9}\times 2.4
Reduce the fraction \frac{40}{72} to lowest terms by extracting and canceling out 8.
\frac{5}{9}\times \frac{12}{5}
Convert decimal number 2.4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{5\times 12}{9\times 5}
Multiply \frac{5}{9} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{9}
Cancel out 5 in both numerator and denominator.
\frac{4}{3}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}