Evaluate
-\frac{5}{6}\approx -0.833333333
Factor
-\frac{5}{6} = -0.8333333333333334
Share
Copied to clipboard
\frac{3\left(-5\right)}{4\times 6}-\frac{1}{4}\times \frac{5}{6}
Multiply \frac{3}{4} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{-15}{24}-\frac{1}{4}\times \frac{5}{6}
Do the multiplications in the fraction \frac{3\left(-5\right)}{4\times 6}.
-\frac{5}{8}-\frac{1}{4}\times \frac{5}{6}
Reduce the fraction \frac{-15}{24} to lowest terms by extracting and canceling out 3.
-\frac{5}{8}+\frac{-5}{4\times 6}
Multiply -\frac{1}{4} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{8}+\frac{-5}{24}
Do the multiplications in the fraction \frac{-5}{4\times 6}.
-\frac{5}{8}-\frac{5}{24}
Fraction \frac{-5}{24} can be rewritten as -\frac{5}{24} by extracting the negative sign.
-\frac{15}{24}-\frac{5}{24}
Least common multiple of 8 and 24 is 24. Convert -\frac{5}{8} and \frac{5}{24} to fractions with denominator 24.
\frac{-15-5}{24}
Since -\frac{15}{24} and \frac{5}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-20}{24}
Subtract 5 from -15 to get -20.
-\frac{5}{6}
Reduce the fraction \frac{-20}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}