Evaluate
\frac{2}{5}=0.4
Factor
\frac{2}{5} = 0.4
Share
Copied to clipboard
\frac{3\times 2}{4\times 5}+\frac{\frac{1}{4}}{\frac{5}{2}}
Multiply \frac{3}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{20}+\frac{\frac{1}{4}}{\frac{5}{2}}
Do the multiplications in the fraction \frac{3\times 2}{4\times 5}.
\frac{3}{10}+\frac{\frac{1}{4}}{\frac{5}{2}}
Reduce the fraction \frac{6}{20} to lowest terms by extracting and canceling out 2.
\frac{3}{10}+\frac{1}{4}\times \frac{2}{5}
Divide \frac{1}{4} by \frac{5}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{5}{2}.
\frac{3}{10}+\frac{1\times 2}{4\times 5}
Multiply \frac{1}{4} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{10}+\frac{2}{20}
Do the multiplications in the fraction \frac{1\times 2}{4\times 5}.
\frac{3}{10}+\frac{1}{10}
Reduce the fraction \frac{2}{20} to lowest terms by extracting and canceling out 2.
\frac{3+1}{10}
Since \frac{3}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{4}{10}
Add 3 and 1 to get 4.
\frac{2}{5}
Reduce the fraction \frac{4}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}