Evaluate
\frac{6}{5}=1.2
Factor
\frac{2 \cdot 3}{5} = 1\frac{1}{5} = 1.2
Share
Copied to clipboard
\frac{3\times 12}{4\times 5}+\frac{\frac{1}{5}}{\frac{4}{3}}-\frac{5}{4}\times \frac{3}{5}
Multiply \frac{3}{4} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{36}{20}+\frac{\frac{1}{5}}{\frac{4}{3}}-\frac{5}{4}\times \frac{3}{5}
Do the multiplications in the fraction \frac{3\times 12}{4\times 5}.
\frac{9}{5}+\frac{\frac{1}{5}}{\frac{4}{3}}-\frac{5}{4}\times \frac{3}{5}
Reduce the fraction \frac{36}{20} to lowest terms by extracting and canceling out 4.
\frac{9}{5}+\frac{1}{5}\times \frac{3}{4}-\frac{5}{4}\times \frac{3}{5}
Divide \frac{1}{5} by \frac{4}{3} by multiplying \frac{1}{5} by the reciprocal of \frac{4}{3}.
\frac{9}{5}+\frac{1\times 3}{5\times 4}-\frac{5}{4}\times \frac{3}{5}
Multiply \frac{1}{5} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{5}+\frac{3}{20}-\frac{5}{4}\times \frac{3}{5}
Do the multiplications in the fraction \frac{1\times 3}{5\times 4}.
\frac{36}{20}+\frac{3}{20}-\frac{5}{4}\times \frac{3}{5}
Least common multiple of 5 and 20 is 20. Convert \frac{9}{5} and \frac{3}{20} to fractions with denominator 20.
\frac{36+3}{20}-\frac{5}{4}\times \frac{3}{5}
Since \frac{36}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
\frac{39}{20}-\frac{5}{4}\times \frac{3}{5}
Add 36 and 3 to get 39.
\frac{39}{20}-\frac{5\times 3}{4\times 5}
Multiply \frac{5}{4} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{39}{20}-\frac{3}{4}
Cancel out 5 in both numerator and denominator.
\frac{39}{20}-\frac{15}{20}
Least common multiple of 20 and 4 is 20. Convert \frac{39}{20} and \frac{3}{4} to fractions with denominator 20.
\frac{39-15}{20}
Since \frac{39}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{24}{20}
Subtract 15 from 39 to get 24.
\frac{6}{5}
Reduce the fraction \frac{24}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}