Evaluate
-3x-\frac{7}{4}+\frac{1}{8x}
Expand
-3x-\frac{7}{4}+\frac{1}{8x}
Graph
Share
Copied to clipboard
\frac{3}{4\times 6x}-\frac{3}{4}\times \frac{1}{3}-3x-\frac{1\times 2+1}{2}
Multiply \frac{3}{4} times \frac{1}{6x} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4\times 6x}-\frac{3\times 1}{4\times 3}-3x-\frac{1\times 2+1}{2}
Multiply \frac{3}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4\times 6x}-\frac{1}{4}-3x-\frac{1\times 2+1}{2}
Cancel out 3 in both numerator and denominator.
\frac{3}{4\times 6x}-\frac{6x}{4\times 6x}-3x-\frac{1\times 2+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\times 6x and 4 is 4\times 6x. Multiply \frac{1}{4} times \frac{6x}{6x}.
\frac{3-6x}{4\times 6x}-3x-\frac{1\times 2+1}{2}
Since \frac{3}{4\times 6x} and \frac{6x}{4\times 6x} have the same denominator, subtract them by subtracting their numerators.
\frac{3\left(-2x+1\right)}{4\times 6x}-3x-\frac{1\times 2+1}{2}
Factor the expressions that are not already factored in \frac{3-6x}{4\times 6x}.
\frac{-2x+1}{2\times 4x}-3x-\frac{1\times 2+1}{2}
Cancel out 3 in both numerator and denominator.
\frac{-2x+1}{2\times 4x}-3x-\frac{2+1}{2}
Multiply 1 and 2 to get 2.
\frac{-2x+1}{2\times 4x}-3x-\frac{3}{2}
Add 2 and 1 to get 3.
\frac{-2x+1}{2\times 4x}-3x-\frac{3\times 4x}{2\times 4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 4x and 2 is 2\times 4x. Multiply \frac{3}{2} times \frac{4x}{4x}.
\frac{-2x+1-3\times 4x}{2\times 4x}-3x
Since \frac{-2x+1}{2\times 4x} and \frac{3\times 4x}{2\times 4x} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+1-12x}{2\times 4x}-3x
Do the multiplications in -2x+1-3\times 4x.
\frac{-14x+1}{2\times 4x}-3x
Combine like terms in -2x+1-12x.
\frac{-14x+1}{2\times 4x}+\frac{-3x\times 2\times 4x}{2\times 4x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{2\times 4x}{2\times 4x}.
\frac{-14x+1-3x\times 2\times 4x}{2\times 4x}
Since \frac{-14x+1}{2\times 4x} and \frac{-3x\times 2\times 4x}{2\times 4x} have the same denominator, add them by adding their numerators.
\frac{-14x+1-24x^{2}}{2\times 4x}
Do the multiplications in -14x+1-3x\times 2\times 4x.
\frac{-24\left(x-\left(-\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{2\times 4x}
Factor the expressions that are not already factored in \frac{-14x+1-24x^{2}}{2\times 4x}.
\frac{-3\left(x-\left(-\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
Cancel out 2\times 4 in both numerator and denominator.
\frac{-3\left(x-\left(-\frac{1}{24}\sqrt{73}\right)-\left(-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
To find the opposite of -\frac{1}{24}\sqrt{73}-\frac{7}{24}, find the opposite of each term.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}-\left(-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
The opposite of -\frac{1}{24}\sqrt{73} is \frac{1}{24}\sqrt{73}.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
The opposite of -\frac{7}{24} is \frac{7}{24}.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}-\left(-\frac{7}{24}\right)\right)}{x}
To find the opposite of \frac{1}{24}\sqrt{73}-\frac{7}{24}, find the opposite of each term.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
The opposite of -\frac{7}{24} is \frac{7}{24}.
\frac{\left(-3x-3\times \frac{1}{24}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Use the distributive property to multiply -3 by x+\frac{1}{24}\sqrt{73}+\frac{7}{24}.
\frac{\left(-3x+\frac{-3}{24}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Multiply -3 and \frac{1}{24} to get \frac{-3}{24}.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Reduce the fraction \frac{-3}{24} to lowest terms by extracting and canceling out 3.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}+\frac{-3\times 7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Express -3\times \frac{7}{24} as a single fraction.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}+\frac{-21}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Multiply -3 and 7 to get -21.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}-\frac{7}{8}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}-3x\left(-\frac{1}{24}\right)\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\sqrt{73}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Apply the distributive property by multiplying each term of -3x-\frac{1}{8}\sqrt{73}-\frac{7}{8} by each term of x-\frac{1}{24}\sqrt{73}+\frac{7}{24}.
\frac{-3x^{2}-3x\left(-\frac{1}{24}\right)\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply \sqrt{73} and \sqrt{73} to get 73.
\frac{-3x^{2}+\frac{-3\left(-1\right)}{24}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -3\left(-\frac{1}{24}\right) as a single fraction.
\frac{-3x^{2}+\frac{3}{24}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -3 and -1 to get 3.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}+\frac{-3\times 7}{24}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -3\times \frac{7}{24} as a single fraction.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}+\frac{-21}{24}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -3 and 7 to get -21.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}-\frac{7}{8}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}-\frac{7}{8}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine \frac{1}{8}x\sqrt{73} and -\frac{1}{8}\sqrt{73}x to get 0.
\frac{-3x^{2}-\frac{7}{8}x+\frac{-73}{8}\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -\frac{1}{8}\times 73 as a single fraction.
\frac{-3x^{2}-\frac{7}{8}x-\frac{73}{8}\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Fraction \frac{-73}{8} can be rewritten as -\frac{73}{8} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{8}x+\frac{-73\left(-1\right)}{8\times 24}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{73}{8} times -\frac{1}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-73\left(-1\right)}{8\times 24}.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}+\frac{-7}{8\times 24}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{1}{8} times \frac{7}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}+\frac{-7}{192}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-7}{8\times 24}.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Fraction \frac{-7}{192} can be rewritten as -\frac{7}{192} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine -\frac{7}{8}x and -\frac{7}{8}x to get -\frac{7}{4}x.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}+\frac{-7\left(-1\right)}{8\times 24}\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{7}{8} times -\frac{1}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}+\frac{7}{192}\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-7\left(-1\right)}{8\times 24}.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine -\frac{7}{192}\sqrt{73} and \frac{7}{192}\sqrt{73} to get 0.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}+\frac{-7\times 7}{8\times 24}}{x}
Multiply -\frac{7}{8} times \frac{7}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}+\frac{-49}{192}}{x}
Do the multiplications in the fraction \frac{-7\times 7}{8\times 24}.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{49}{192}}{x}
Fraction \frac{-49}{192} can be rewritten as -\frac{49}{192} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73-49}{192}}{x}
Since \frac{73}{192} and \frac{49}{192} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}-\frac{7}{4}x+\frac{24}{192}}{x}
Subtract 49 from 73 to get 24.
\frac{-3x^{2}-\frac{7}{4}x+\frac{1}{8}}{x}
Reduce the fraction \frac{24}{192} to lowest terms by extracting and canceling out 24.
\frac{3}{4\times 6x}-\frac{3}{4}\times \frac{1}{3}-3x-\frac{1\times 2+1}{2}
Multiply \frac{3}{4} times \frac{1}{6x} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4\times 6x}-\frac{3\times 1}{4\times 3}-3x-\frac{1\times 2+1}{2}
Multiply \frac{3}{4} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4\times 6x}-\frac{1}{4}-3x-\frac{1\times 2+1}{2}
Cancel out 3 in both numerator and denominator.
\frac{3}{4\times 6x}-\frac{6x}{4\times 6x}-3x-\frac{1\times 2+1}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\times 6x and 4 is 4\times 6x. Multiply \frac{1}{4} times \frac{6x}{6x}.
\frac{3-6x}{4\times 6x}-3x-\frac{1\times 2+1}{2}
Since \frac{3}{4\times 6x} and \frac{6x}{4\times 6x} have the same denominator, subtract them by subtracting their numerators.
\frac{3\left(-2x+1\right)}{4\times 6x}-3x-\frac{1\times 2+1}{2}
Factor the expressions that are not already factored in \frac{3-6x}{4\times 6x}.
\frac{-2x+1}{2\times 4x}-3x-\frac{1\times 2+1}{2}
Cancel out 3 in both numerator and denominator.
\frac{-2x+1}{2\times 4x}-3x-\frac{2+1}{2}
Multiply 1 and 2 to get 2.
\frac{-2x+1}{2\times 4x}-3x-\frac{3}{2}
Add 2 and 1 to get 3.
\frac{-2x+1}{2\times 4x}-3x-\frac{3\times 4x}{2\times 4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 4x and 2 is 2\times 4x. Multiply \frac{3}{2} times \frac{4x}{4x}.
\frac{-2x+1-3\times 4x}{2\times 4x}-3x
Since \frac{-2x+1}{2\times 4x} and \frac{3\times 4x}{2\times 4x} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x+1-12x}{2\times 4x}-3x
Do the multiplications in -2x+1-3\times 4x.
\frac{-14x+1}{2\times 4x}-3x
Combine like terms in -2x+1-12x.
\frac{-14x+1}{2\times 4x}+\frac{-3x\times 2\times 4x}{2\times 4x}
To add or subtract expressions, expand them to make their denominators the same. Multiply -3x times \frac{2\times 4x}{2\times 4x}.
\frac{-14x+1-3x\times 2\times 4x}{2\times 4x}
Since \frac{-14x+1}{2\times 4x} and \frac{-3x\times 2\times 4x}{2\times 4x} have the same denominator, add them by adding their numerators.
\frac{-14x+1-24x^{2}}{2\times 4x}
Do the multiplications in -14x+1-3x\times 2\times 4x.
\frac{-24\left(x-\left(-\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{2\times 4x}
Factor the expressions that are not already factored in \frac{-14x+1-24x^{2}}{2\times 4x}.
\frac{-3\left(x-\left(-\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
Cancel out 2\times 4 in both numerator and denominator.
\frac{-3\left(x-\left(-\frac{1}{24}\sqrt{73}\right)-\left(-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
To find the opposite of -\frac{1}{24}\sqrt{73}-\frac{7}{24}, find the opposite of each term.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}-\left(-\frac{7}{24}\right)\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
The opposite of -\frac{1}{24}\sqrt{73} is \frac{1}{24}\sqrt{73}.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\left(\frac{1}{24}\sqrt{73}-\frac{7}{24}\right)\right)}{x}
The opposite of -\frac{7}{24} is \frac{7}{24}.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}-\left(-\frac{7}{24}\right)\right)}{x}
To find the opposite of \frac{1}{24}\sqrt{73}-\frac{7}{24}, find the opposite of each term.
\frac{-3\left(x+\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
The opposite of -\frac{7}{24} is \frac{7}{24}.
\frac{\left(-3x-3\times \frac{1}{24}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Use the distributive property to multiply -3 by x+\frac{1}{24}\sqrt{73}+\frac{7}{24}.
\frac{\left(-3x+\frac{-3}{24}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Multiply -3 and \frac{1}{24} to get \frac{-3}{24}.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}-3\times \frac{7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Reduce the fraction \frac{-3}{24} to lowest terms by extracting and canceling out 3.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}+\frac{-3\times 7}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Express -3\times \frac{7}{24} as a single fraction.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}+\frac{-21}{24}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Multiply -3 and 7 to get -21.
\frac{\left(-3x-\frac{1}{8}\sqrt{73}-\frac{7}{8}\right)\left(x-\frac{1}{24}\sqrt{73}+\frac{7}{24}\right)}{x}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}-3x\left(-\frac{1}{24}\right)\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\sqrt{73}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Apply the distributive property by multiplying each term of -3x-\frac{1}{8}\sqrt{73}-\frac{7}{8} by each term of x-\frac{1}{24}\sqrt{73}+\frac{7}{24}.
\frac{-3x^{2}-3x\left(-\frac{1}{24}\right)\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply \sqrt{73} and \sqrt{73} to get 73.
\frac{-3x^{2}+\frac{-3\left(-1\right)}{24}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -3\left(-\frac{1}{24}\right) as a single fraction.
\frac{-3x^{2}+\frac{3}{24}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -3 and -1 to get 3.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}-3x\times \frac{7}{24}-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}+\frac{-3\times 7}{24}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -3\times \frac{7}{24} as a single fraction.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}+\frac{-21}{24}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -3 and 7 to get -21.
\frac{-3x^{2}+\frac{1}{8}x\sqrt{73}-\frac{7}{8}x-\frac{1}{8}\sqrt{73}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Reduce the fraction \frac{-21}{24} to lowest terms by extracting and canceling out 3.
\frac{-3x^{2}-\frac{7}{8}x-\frac{1}{8}\times 73\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine \frac{1}{8}x\sqrt{73} and -\frac{1}{8}\sqrt{73}x to get 0.
\frac{-3x^{2}-\frac{7}{8}x+\frac{-73}{8}\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Express -\frac{1}{8}\times 73 as a single fraction.
\frac{-3x^{2}-\frac{7}{8}x-\frac{73}{8}\left(-\frac{1}{24}\right)-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Fraction \frac{-73}{8} can be rewritten as -\frac{73}{8} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{8}x+\frac{-73\left(-1\right)}{8\times 24}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{73}{8} times -\frac{1}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}-\frac{1}{8}\sqrt{73}\times \frac{7}{24}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-73\left(-1\right)}{8\times 24}.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}+\frac{-7}{8\times 24}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{1}{8} times \frac{7}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}+\frac{-7}{192}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-7}{8\times 24}.
\frac{-3x^{2}-\frac{7}{8}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}-\frac{7}{8}x-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Fraction \frac{-7}{192} can be rewritten as -\frac{7}{192} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}-\frac{7}{8}\left(-\frac{1}{24}\right)\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine -\frac{7}{8}x and -\frac{7}{8}x to get -\frac{7}{4}x.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}+\frac{-7\left(-1\right)}{8\times 24}\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Multiply -\frac{7}{8} times -\frac{1}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{192}\sqrt{73}+\frac{7}{192}\sqrt{73}-\frac{7}{8}\times \frac{7}{24}}{x}
Do the multiplications in the fraction \frac{-7\left(-1\right)}{8\times 24}.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{7}{8}\times \frac{7}{24}}{x}
Combine -\frac{7}{192}\sqrt{73} and \frac{7}{192}\sqrt{73} to get 0.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}+\frac{-7\times 7}{8\times 24}}{x}
Multiply -\frac{7}{8} times \frac{7}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}+\frac{-49}{192}}{x}
Do the multiplications in the fraction \frac{-7\times 7}{8\times 24}.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73}{192}-\frac{49}{192}}{x}
Fraction \frac{-49}{192} can be rewritten as -\frac{49}{192} by extracting the negative sign.
\frac{-3x^{2}-\frac{7}{4}x+\frac{73-49}{192}}{x}
Since \frac{73}{192} and \frac{49}{192} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}-\frac{7}{4}x+\frac{24}{192}}{x}
Subtract 49 from 73 to get 24.
\frac{-3x^{2}-\frac{7}{4}x+\frac{1}{8}}{x}
Reduce the fraction \frac{24}{192} to lowest terms by extracting and canceling out 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}