Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{4}\times 4\sqrt{11}-\frac{2}{6}\sqrt{45}+\frac{1}{8}\sqrt{320}+\frac{1}{5}\sqrt{275}
Factor 176=4^{2}\times 11. Rewrite the square root of the product \sqrt{4^{2}\times 11} as the product of square roots \sqrt{4^{2}}\sqrt{11}. Take the square root of 4^{2}.
3\sqrt{11}-\frac{2}{6}\sqrt{45}+\frac{1}{8}\sqrt{320}+\frac{1}{5}\sqrt{275}
Cancel out 4 and 4.
3\sqrt{11}-\frac{1}{3}\sqrt{45}+\frac{1}{8}\sqrt{320}+\frac{1}{5}\sqrt{275}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
3\sqrt{11}-\frac{1}{3}\times 3\sqrt{5}+\frac{1}{8}\sqrt{320}+\frac{1}{5}\sqrt{275}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
3\sqrt{11}-\sqrt{5}+\frac{1}{8}\sqrt{320}+\frac{1}{5}\sqrt{275}
Cancel out 3 and 3.
3\sqrt{11}-\sqrt{5}+\frac{1}{8}\times 8\sqrt{5}+\frac{1}{5}\sqrt{275}
Factor 320=8^{2}\times 5. Rewrite the square root of the product \sqrt{8^{2}\times 5} as the product of square roots \sqrt{8^{2}}\sqrt{5}. Take the square root of 8^{2}.
3\sqrt{11}-\sqrt{5}+\sqrt{5}+\frac{1}{5}\sqrt{275}
Cancel out 8 and 8.
3\sqrt{11}+\frac{1}{5}\sqrt{275}
Combine -\sqrt{5} and \sqrt{5} to get 0.
3\sqrt{11}+\frac{1}{5}\times 5\sqrt{11}
Factor 275=5^{2}\times 11. Rewrite the square root of the product \sqrt{5^{2}\times 11} as the product of square roots \sqrt{5^{2}}\sqrt{11}. Take the square root of 5^{2}.
3\sqrt{11}+\sqrt{11}
Cancel out 5 and 5.
4\sqrt{11}
Combine 3\sqrt{11} and \sqrt{11} to get 4\sqrt{11}.