Solve for f
f=\frac{4g}{3}
g\neq 0
Solve for g
g=\frac{3f}{4}
f\neq 0
Share
Copied to clipboard
\frac{3}{4}f\times 4\times 6=4g\times \frac{2}{\frac{1}{3}}
Multiply both sides of the equation by 4g, the least common multiple of 4,g.
3f\times 6=4g\times \frac{2}{\frac{1}{3}}
Multiply \frac{3}{4} and 4 to get 3.
18f=4g\times \frac{2}{\frac{1}{3}}
Multiply 3 and 6 to get 18.
18f=4g\times 2\times 3
Divide 2 by \frac{1}{3} by multiplying 2 by the reciprocal of \frac{1}{3}.
18f=4g\times 6
Multiply 2 and 3 to get 6.
18f=24g
Multiply 4 and 6 to get 24.
\frac{18f}{18}=\frac{24g}{18}
Divide both sides by 18.
f=\frac{24g}{18}
Dividing by 18 undoes the multiplication by 18.
f=\frac{4g}{3}
Divide 24g by 18.
\frac{3}{4}f\times 4\times 6=4g\times \frac{2}{\frac{1}{3}}
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4g, the least common multiple of 4,g.
3f\times 6=4g\times \frac{2}{\frac{1}{3}}
Multiply \frac{3}{4} and 4 to get 3.
18f=4g\times \frac{2}{\frac{1}{3}}
Multiply 3 and 6 to get 18.
18f=4g\times 2\times 3
Divide 2 by \frac{1}{3} by multiplying 2 by the reciprocal of \frac{1}{3}.
18f=4g\times 6
Multiply 2 and 3 to get 6.
18f=24g
Multiply 4 and 6 to get 24.
24g=18f
Swap sides so that all variable terms are on the left hand side.
\frac{24g}{24}=\frac{18f}{24}
Divide both sides by 24.
g=\frac{18f}{24}
Dividing by 24 undoes the multiplication by 24.
g=\frac{3f}{4}
Divide 18f by 24.
g=\frac{3f}{4}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}