Evaluate
\frac{9a}{4}+6b
Expand
\frac{9a}{4}+6b
Share
Copied to clipboard
\frac{3}{4}\left(8a-2b-5\left(a-2b\right)\right)
Use the distributive property to multiply 2 by 4a-b.
\frac{3}{4}\left(8a-2b-5a+10b\right)
Use the distributive property to multiply -5 by a-2b.
\frac{3}{4}\left(3a-2b+10b\right)
Combine 8a and -5a to get 3a.
\frac{3}{4}\left(3a+8b\right)
Combine -2b and 10b to get 8b.
\frac{3}{4}\times 3a+\frac{3}{4}\times 8b
Use the distributive property to multiply \frac{3}{4} by 3a+8b.
\frac{3\times 3}{4}a+\frac{3}{4}\times 8b
Express \frac{3}{4}\times 3 as a single fraction.
\frac{9}{4}a+\frac{3}{4}\times 8b
Multiply 3 and 3 to get 9.
\frac{9}{4}a+\frac{3\times 8}{4}b
Express \frac{3}{4}\times 8 as a single fraction.
\frac{9}{4}a+\frac{24}{4}b
Multiply 3 and 8 to get 24.
\frac{9}{4}a+6b
Divide 24 by 4 to get 6.
\frac{3}{4}\left(8a-2b-5\left(a-2b\right)\right)
Use the distributive property to multiply 2 by 4a-b.
\frac{3}{4}\left(8a-2b-5a+10b\right)
Use the distributive property to multiply -5 by a-2b.
\frac{3}{4}\left(3a-2b+10b\right)
Combine 8a and -5a to get 3a.
\frac{3}{4}\left(3a+8b\right)
Combine -2b and 10b to get 8b.
\frac{3}{4}\times 3a+\frac{3}{4}\times 8b
Use the distributive property to multiply \frac{3}{4} by 3a+8b.
\frac{3\times 3}{4}a+\frac{3}{4}\times 8b
Express \frac{3}{4}\times 3 as a single fraction.
\frac{9}{4}a+\frac{3}{4}\times 8b
Multiply 3 and 3 to get 9.
\frac{9}{4}a+\frac{3\times 8}{4}b
Express \frac{3}{4}\times 8 as a single fraction.
\frac{9}{4}a+\frac{24}{4}b
Multiply 3 and 8 to get 24.
\frac{9}{4}a+6b
Divide 24 by 4 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}