Solve for x
x = -\frac{25}{4} = -6\frac{1}{4} = -6.25
Graph
Share
Copied to clipboard
\frac{3}{4}\left(\frac{4}{3}\times \frac{1}{2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x
Use the distributive property to multiply \frac{4}{3} by \frac{1}{2}x-\frac{1}{4}.
\frac{3}{4}\left(\frac{4\times 1}{3\times 2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x
Multiply \frac{4}{3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(\frac{4}{6}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x
Do the multiplications in the fraction \frac{4\times 1}{3\times 2}.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4\left(-1\right)}{3\times 4}-8\right)=\frac{3}{2}x
Multiply \frac{4}{3} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1}{3}-8\right)=\frac{3}{2}x
Cancel out 4 in both numerator and denominator.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-8\right)=\frac{3}{2}x
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-\frac{24}{3}\right)=\frac{3}{2}x
Convert 8 to fraction \frac{24}{3}.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1-24}{3}\right)=\frac{3}{2}x
Since -\frac{1}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}\left(\frac{2}{3}x-\frac{25}{3}\right)=\frac{3}{2}x
Subtract 24 from -1 to get -25.
\frac{3}{4}\times \frac{2}{3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x
Use the distributive property to multiply \frac{3}{4} by \frac{2}{3}x-\frac{25}{3}.
\frac{3\times 2}{4\times 3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x
Multiply \frac{3}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{4}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x
Cancel out 3 in both numerator and denominator.
\frac{1}{2}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{3\left(-25\right)}{4\times 3}=\frac{3}{2}x
Multiply \frac{3}{4} times -\frac{25}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x+\frac{-25}{4}=\frac{3}{2}x
Cancel out 3 in both numerator and denominator.
\frac{1}{2}x-\frac{25}{4}=\frac{3}{2}x
Fraction \frac{-25}{4} can be rewritten as -\frac{25}{4} by extracting the negative sign.
\frac{1}{2}x-\frac{25}{4}-\frac{3}{2}x=0
Subtract \frac{3}{2}x from both sides.
-x-\frac{25}{4}=0
Combine \frac{1}{2}x and -\frac{3}{2}x to get -x.
-x=\frac{25}{4}
Add \frac{25}{4} to both sides. Anything plus zero gives itself.
x=-\frac{25}{4}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}