Solve for t
t = \frac{16}{15} = 1\frac{1}{15} \approx 1.066666667
Quiz
Linear Equation
5 problems similar to:
\frac { 3 } { 4 } : t = \frac { 5 } { 16 } : \frac { 4 } { 9 }
Share
Copied to clipboard
\frac{3}{4}=t\times \frac{\frac{5}{16}}{\frac{4}{9}}
Variable t cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by t.
\frac{3}{4}=t\times \frac{5}{16}\times \frac{9}{4}
Divide \frac{5}{16} by \frac{4}{9} by multiplying \frac{5}{16} by the reciprocal of \frac{4}{9}.
\frac{3}{4}=t\times \frac{5\times 9}{16\times 4}
Multiply \frac{5}{16} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}=t\times \frac{45}{64}
Do the multiplications in the fraction \frac{5\times 9}{16\times 4}.
t\times \frac{45}{64}=\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
t=\frac{3}{4}\times \frac{64}{45}
Multiply both sides by \frac{64}{45}, the reciprocal of \frac{45}{64}.
t=\frac{3\times 64}{4\times 45}
Multiply \frac{3}{4} times \frac{64}{45} by multiplying numerator times numerator and denominator times denominator.
t=\frac{192}{180}
Do the multiplications in the fraction \frac{3\times 64}{4\times 45}.
t=\frac{16}{15}
Reduce the fraction \frac{192}{180} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}