Solve for x
x = \frac{45 \sqrt{7}}{14} \approx 8.504200643
Graph
Share
Copied to clipboard
6\times \frac{\frac{3}{4}}{\frac{\sqrt{7}}{4}}=x\times \frac{4}{5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6x, the least common multiple of x,6.
6\times \frac{3\times 4}{4\sqrt{7}}=x\times \frac{4}{5}
Divide \frac{3}{4} by \frac{\sqrt{7}}{4} by multiplying \frac{3}{4} by the reciprocal of \frac{\sqrt{7}}{4}.
6\times \frac{3}{\sqrt{7}}=x\times \frac{4}{5}
Cancel out 4 in both numerator and denominator.
6\times \frac{3\sqrt{7}}{\left(\sqrt{7}\right)^{2}}=x\times \frac{4}{5}
Rationalize the denominator of \frac{3}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
6\times \frac{3\sqrt{7}}{7}=x\times \frac{4}{5}
The square of \sqrt{7} is 7.
\frac{6\times 3\sqrt{7}}{7}=x\times \frac{4}{5}
Express 6\times \frac{3\sqrt{7}}{7} as a single fraction.
\frac{18\sqrt{7}}{7}=x\times \frac{4}{5}
Multiply 6 and 3 to get 18.
x\times \frac{4}{5}=\frac{18\sqrt{7}}{7}
Swap sides so that all variable terms are on the left hand side.
35x\times \frac{4}{5}=5\times 18\sqrt{7}
Multiply both sides of the equation by 35, the least common multiple of 5,7.
\frac{4}{5}\times 35x=5\times 18\sqrt{7}
Reorder the terms.
\frac{4\times 35}{5}x=5\times 18\sqrt{7}
Express \frac{4}{5}\times 35 as a single fraction.
\frac{140}{5}x=5\times 18\sqrt{7}
Multiply 4 and 35 to get 140.
28x=5\times 18\sqrt{7}
Divide 140 by 5 to get 28.
28x=90\sqrt{7}
Multiply 5 and 18 to get 90.
\frac{28x}{28}=\frac{90\sqrt{7}}{28}
Divide both sides by 28.
x=\frac{90\sqrt{7}}{28}
Dividing by 28 undoes the multiplication by 28.
x=\frac{45\sqrt{7}}{14}
Divide 90\sqrt{7} by 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}