Solve for x
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
\frac{3+3}{4}+\frac{3}{4}x+\frac{1}{3}=\frac{25}{12}
Since \frac{3}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
\frac{6}{4}+\frac{3}{4}x+\frac{1}{3}=\frac{25}{12}
Add 3 and 3 to get 6.
\frac{3}{2}+\frac{3}{4}x+\frac{1}{3}=\frac{25}{12}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{9}{6}+\frac{3}{4}x+\frac{2}{6}=\frac{25}{12}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{9+2}{6}+\frac{3}{4}x=\frac{25}{12}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{11}{6}+\frac{3}{4}x=\frac{25}{12}
Add 9 and 2 to get 11.
\frac{3}{4}x=\frac{25}{12}-\frac{11}{6}
Subtract \frac{11}{6} from both sides.
\frac{3}{4}x=\frac{25}{12}-\frac{22}{12}
Least common multiple of 12 and 6 is 12. Convert \frac{25}{12} and \frac{11}{6} to fractions with denominator 12.
\frac{3}{4}x=\frac{25-22}{12}
Since \frac{25}{12} and \frac{22}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}x=\frac{3}{12}
Subtract 22 from 25 to get 3.
\frac{3}{4}x=\frac{1}{4}
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
x=\frac{1}{4}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x=\frac{1\times 4}{4\times 3}
Multiply \frac{1}{4} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x=\frac{1}{3}
Cancel out 4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}