Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(36+18\sqrt{3}\right)}{\left(36-18\sqrt{3}\right)\left(36+18\sqrt{3}\right)}
Rationalize the denominator of \frac{3}{36-18\sqrt{3}} by multiplying numerator and denominator by 36+18\sqrt{3}.
\frac{3\left(36+18\sqrt{3}\right)}{36^{2}-\left(-18\sqrt{3}\right)^{2}}
Consider \left(36-18\sqrt{3}\right)\left(36+18\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(36+18\sqrt{3}\right)}{1296-\left(-18\sqrt{3}\right)^{2}}
Calculate 36 to the power of 2 and get 1296.
\frac{3\left(36+18\sqrt{3}\right)}{1296-\left(-18\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-18\sqrt{3}\right)^{2}.
\frac{3\left(36+18\sqrt{3}\right)}{1296-324\left(\sqrt{3}\right)^{2}}
Calculate -18 to the power of 2 and get 324.
\frac{3\left(36+18\sqrt{3}\right)}{1296-324\times 3}
The square of \sqrt{3} is 3.
\frac{3\left(36+18\sqrt{3}\right)}{1296-972}
Multiply 324 and 3 to get 972.
\frac{3\left(36+18\sqrt{3}\right)}{324}
Subtract 972 from 1296 to get 324.
\frac{1}{108}\left(36+18\sqrt{3}\right)
Divide 3\left(36+18\sqrt{3}\right) by 324 to get \frac{1}{108}\left(36+18\sqrt{3}\right).
\frac{1}{108}\times 36+\frac{1}{108}\times 18\sqrt{3}
Use the distributive property to multiply \frac{1}{108} by 36+18\sqrt{3}.
\frac{36}{108}+\frac{1}{108}\times 18\sqrt{3}
Multiply \frac{1}{108} and 36 to get \frac{36}{108}.
\frac{1}{3}+\frac{1}{108}\times 18\sqrt{3}
Reduce the fraction \frac{36}{108} to lowest terms by extracting and canceling out 36.
\frac{1}{3}+\frac{18}{108}\sqrt{3}
Multiply \frac{1}{108} and 18 to get \frac{18}{108}.
\frac{1}{3}+\frac{1}{6}\sqrt{3}
Reduce the fraction \frac{18}{108} to lowest terms by extracting and canceling out 18.