Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{3xy}\times \frac{y}{3x}
Cancel out 2 in both numerator and denominator.
\frac{3y}{3xy\times 3x}
Multiply \frac{3}{3xy} times \frac{y}{3x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3xx}
Cancel out 3y in both numerator and denominator.
\frac{1}{3x^{2}}
Multiply x and x to get x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{3xy}\times \frac{y}{3x})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3y}{3xy\times 3x})
Multiply \frac{3}{3xy} times \frac{y}{3x} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3xx})
Cancel out 3y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3x^{2}})
Multiply x and x to get x^{2}.
-\left(3x^{2}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(3x^{2}\right)^{-2}\times 2\times 3x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-6x^{1}\times \left(3x^{2}\right)^{-2}
Simplify.
-6x\times \left(3x^{2}\right)^{-2}
For any term t, t^{1}=t.