Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{3\left(x-3\right)}-\frac{1}{x+3}-\frac{x+10}{3x^{2}-27}
Factor 3x-9.
\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-3\right) and x+3 is 3\left(x-3\right)\left(x+3\right). Multiply \frac{3}{3\left(x-3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{x+3} times \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{3\left(x+3\right)-3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Since \frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)} and \frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+9-3x+9}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Do the multiplications in 3\left(x+3\right)-3\left(x-3\right).
\frac{18}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Combine like terms in 3x+9-3x+9.
\frac{18}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3\left(x-3\right)\left(x+3\right)}
Factor 3x^{2}-27.
\frac{18-\left(x+10\right)}{3\left(x-3\right)\left(x+3\right)}
Since \frac{18}{3\left(x-3\right)\left(x+3\right)} and \frac{x+10}{3\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{18-x-10}{3\left(x-3\right)\left(x+3\right)}
Do the multiplications in 18-\left(x+10\right).
\frac{8-x}{3\left(x-3\right)\left(x+3\right)}
Combine like terms in 18-x-10.
\frac{8-x}{3x^{2}-27}
Expand 3\left(x-3\right)\left(x+3\right).
\frac{3}{3\left(x-3\right)}-\frac{1}{x+3}-\frac{x+10}{3x^{2}-27}
Factor 3x-9.
\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-3\right) and x+3 is 3\left(x-3\right)\left(x+3\right). Multiply \frac{3}{3\left(x-3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{x+3} times \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{3\left(x+3\right)-3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Since \frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)} and \frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+9-3x+9}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Do the multiplications in 3\left(x+3\right)-3\left(x-3\right).
\frac{18}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3x^{2}-27}
Combine like terms in 3x+9-3x+9.
\frac{18}{3\left(x-3\right)\left(x+3\right)}-\frac{x+10}{3\left(x-3\right)\left(x+3\right)}
Factor 3x^{2}-27.
\frac{18-\left(x+10\right)}{3\left(x-3\right)\left(x+3\right)}
Since \frac{18}{3\left(x-3\right)\left(x+3\right)} and \frac{x+10}{3\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{18-x-10}{3\left(x-3\right)\left(x+3\right)}
Do the multiplications in 18-\left(x+10\right).
\frac{8-x}{3\left(x-3\right)\left(x+3\right)}
Combine like terms in 18-x-10.
\frac{8-x}{3x^{2}-27}
Expand 3\left(x-3\right)\left(x+3\right).