Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{3x-3\sqrt{3}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{3\left(3x+3\sqrt{3}\right)}{\left(3x-3\sqrt{3}\right)\left(3x+3\sqrt{3}\right)}
Rationalize the denominator of \frac{3}{3x-3\sqrt{3}} by multiplying numerator and denominator by 3x+3\sqrt{3}.
\frac{3\left(3x+3\sqrt{3}\right)}{\left(3x\right)^{2}-\left(-3\sqrt{3}\right)^{2}}
Consider \left(3x-3\sqrt{3}\right)\left(3x+3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(3x+3\sqrt{3}\right)}{3^{2}x^{2}-\left(-3\sqrt{3}\right)^{2}}
Expand \left(3x\right)^{2}.
\frac{3\left(3x+3\sqrt{3}\right)}{9x^{2}-\left(-3\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{3\left(3x+3\sqrt{3}\right)}{9x^{2}-\left(-3\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-3\sqrt{3}\right)^{2}.
\frac{3\left(3x+3\sqrt{3}\right)}{9x^{2}-9\left(\sqrt{3}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{3\left(3x+3\sqrt{3}\right)}{9x^{2}-9\times 3}
The square of \sqrt{3} is 3.
\frac{3\left(3x+3\sqrt{3}\right)}{9x^{2}-27}
Multiply 9 and 3 to get 27.
\frac{9x+9\sqrt{3}}{9x^{2}-27}
Use the distributive property to multiply 3 by 3x+3\sqrt{3}.
\frac{9\left(x+\sqrt{3}\right)}{9\left(x^{2}-3\right)}
Factor the expressions that are not already factored.
\frac{x+\sqrt{3}}{x^{2}-3}
Cancel out 9 in both numerator and denominator.