Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(3+7i\right)}{\left(3-7i\right)\left(3+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+7i.
\frac{3\left(3+7i\right)}{3^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(3+7i\right)}{58}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 3+3\times \left(7i\right)}{58}
Multiply 3 times 3+7i.
\frac{9+21i}{58}
Do the multiplications in 3\times 3+3\times \left(7i\right).
\frac{9}{58}+\frac{21}{58}i
Divide 9+21i by 58 to get \frac{9}{58}+\frac{21}{58}i.
Re(\frac{3\left(3+7i\right)}{\left(3-7i\right)\left(3+7i\right)})
Multiply both numerator and denominator of \frac{3}{3-7i} by the complex conjugate of the denominator, 3+7i.
Re(\frac{3\left(3+7i\right)}{3^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{3\left(3+7i\right)}{58})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 3+3\times \left(7i\right)}{58})
Multiply 3 times 3+7i.
Re(\frac{9+21i}{58})
Do the multiplications in 3\times 3+3\times \left(7i\right).
Re(\frac{9}{58}+\frac{21}{58}i)
Divide 9+21i by 58 to get \frac{9}{58}+\frac{21}{58}i.
\frac{9}{58}
The real part of \frac{9}{58}+\frac{21}{58}i is \frac{9}{58}.