Evaluate
\frac{7}{9}\approx 0.777777778
Factor
\frac{7}{3 ^ {2}} = 0.7777777777777778
Share
Copied to clipboard
\frac{3}{3+\frac{3}{3+\frac{3}{6}}}
Add 3 and 3 to get 6.
\frac{3}{3+\frac{3}{3+\frac{1}{2}}}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{3}{3+\frac{3}{\frac{6}{2}+\frac{1}{2}}}
Convert 3 to fraction \frac{6}{2}.
\frac{3}{3+\frac{3}{\frac{6+1}{2}}}
Since \frac{6}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{3+\frac{3}{\frac{7}{2}}}
Add 6 and 1 to get 7.
\frac{3}{3+3\times \frac{2}{7}}
Divide 3 by \frac{7}{2} by multiplying 3 by the reciprocal of \frac{7}{2}.
\frac{3}{3+\frac{3\times 2}{7}}
Express 3\times \frac{2}{7} as a single fraction.
\frac{3}{3+\frac{6}{7}}
Multiply 3 and 2 to get 6.
\frac{3}{\frac{21}{7}+\frac{6}{7}}
Convert 3 to fraction \frac{21}{7}.
\frac{3}{\frac{21+6}{7}}
Since \frac{21}{7} and \frac{6}{7} have the same denominator, add them by adding their numerators.
\frac{3}{\frac{27}{7}}
Add 21 and 6 to get 27.
3\times \frac{7}{27}
Divide 3 by \frac{27}{7} by multiplying 3 by the reciprocal of \frac{27}{7}.
\frac{3\times 7}{27}
Express 3\times \frac{7}{27} as a single fraction.
\frac{21}{27}
Multiply 3 and 7 to get 21.
\frac{7}{9}
Reduce the fraction \frac{21}{27} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}