Evaluate
\frac{53}{44}\approx 1.204545455
Factor
\frac{53}{2 ^ {2} \cdot 11} = 1\frac{9}{44} = 1.2045454545454546
Share
Copied to clipboard
\frac{3}{3+1}+\frac{5}{11}-\left(\frac{3}{5}-\frac{12}{20}\right)\times \frac{123}{456}
Divide 2 by 2 to get 1.
\frac{3}{4}+\frac{5}{11}-\left(\frac{3}{5}-\frac{12}{20}\right)\times \frac{123}{456}
Add 3 and 1 to get 4.
\frac{33}{44}+\frac{20}{44}-\left(\frac{3}{5}-\frac{12}{20}\right)\times \frac{123}{456}
Least common multiple of 4 and 11 is 44. Convert \frac{3}{4} and \frac{5}{11} to fractions with denominator 44.
\frac{33+20}{44}-\left(\frac{3}{5}-\frac{12}{20}\right)\times \frac{123}{456}
Since \frac{33}{44} and \frac{20}{44} have the same denominator, add them by adding their numerators.
\frac{53}{44}-\left(\frac{3}{5}-\frac{12}{20}\right)\times \frac{123}{456}
Add 33 and 20 to get 53.
\frac{53}{44}-\left(\frac{3}{5}-\frac{3}{5}\right)\times \frac{123}{456}
Reduce the fraction \frac{12}{20} to lowest terms by extracting and canceling out 4.
\frac{53}{44}-0\times \frac{123}{456}
Subtract \frac{3}{5} from \frac{3}{5} to get 0.
\frac{53}{44}-0\times \frac{41}{152}
Reduce the fraction \frac{123}{456} to lowest terms by extracting and canceling out 3.
\frac{53}{44}-0
Multiply 0 and \frac{41}{152} to get 0.
\frac{53}{44}
Subtract 0 from \frac{53}{44} to get \frac{53}{44}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}