Evaluate
-\frac{15x^{4}-12x^{3}-241x^{2}+169x+12}{2x\left(x^{2}-16\right)}
Expand
-\frac{15x^{4}-12x^{3}-241x^{2}+169x+12}{2\left(x-4\right)\left(x^{2}+4x\right)}
Graph
Share
Copied to clipboard
\frac{3}{2\left(x-4\right)}+\frac{3-2x}{2x\left(x+4\right)}-\frac{15x-12}{2}
Factor 2x-8. Factor 2x^{2}+8x.
\frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}+\frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 2x\left(x+4\right) is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{3}{2\left(x-4\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{3-2x}{2x\left(x+4\right)} times \frac{x-4}{x-4}.
\frac{3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Since \frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+12x+3x-12-2x^{2}+8x}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Do the multiplications in 3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right).
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Combine like terms in 3x^{2}+12x+3x-12-2x^{2}+8x.
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x-4\right)\left(x+4\right) and 2 is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{15x-12}{2} times \frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}.
\frac{x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
Since \frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x}{2x\left(x-4\right)\left(x+4\right)}
Do the multiplications in x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right).
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x\left(x-4\right)\left(x+4\right)}
Combine like terms in x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x.
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x^{3}-32x}
Expand 2x\left(x-4\right)\left(x+4\right).
\frac{3}{2\left(x-4\right)}+\frac{3-2x}{2x\left(x+4\right)}-\frac{15x-12}{2}
Factor 2x-8. Factor 2x^{2}+8x.
\frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}+\frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 2x\left(x+4\right) is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{3}{2\left(x-4\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{3-2x}{2x\left(x+4\right)} times \frac{x-4}{x-4}.
\frac{3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Since \frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+12x+3x-12-2x^{2}+8x}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Do the multiplications in 3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right).
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Combine like terms in 3x^{2}+12x+3x-12-2x^{2}+8x.
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x-4\right)\left(x+4\right) and 2 is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{15x-12}{2} times \frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}.
\frac{x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
Since \frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x}{2x\left(x-4\right)\left(x+4\right)}
Do the multiplications in x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right).
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x\left(x-4\right)\left(x+4\right)}
Combine like terms in x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x.
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x^{3}-32x}
Expand 2x\left(x-4\right)\left(x+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}