Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2\left(x-4\right)}+\frac{3-2x}{2x\left(x+4\right)}-\frac{15x-12}{2}
Factor 2x-8. Factor 2x^{2}+8x.
\frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}+\frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 2x\left(x+4\right) is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{3}{2\left(x-4\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{3-2x}{2x\left(x+4\right)} times \frac{x-4}{x-4}.
\frac{3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Since \frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+12x+3x-12-2x^{2}+8x}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Do the multiplications in 3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right).
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Combine like terms in 3x^{2}+12x+3x-12-2x^{2}+8x.
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x-4\right)\left(x+4\right) and 2 is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{15x-12}{2} times \frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}.
\frac{x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
Since \frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x}{2x\left(x-4\right)\left(x+4\right)}
Do the multiplications in x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right).
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x\left(x-4\right)\left(x+4\right)}
Combine like terms in x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x.
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x^{3}-32x}
Expand 2x\left(x-4\right)\left(x+4\right).
\frac{3}{2\left(x-4\right)}+\frac{3-2x}{2x\left(x+4\right)}-\frac{15x-12}{2}
Factor 2x-8. Factor 2x^{2}+8x.
\frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}+\frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-4\right) and 2x\left(x+4\right) is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{3}{2\left(x-4\right)} times \frac{x\left(x+4\right)}{x\left(x+4\right)}. Multiply \frac{3-2x}{2x\left(x+4\right)} times \frac{x-4}{x-4}.
\frac{3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Since \frac{3x\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(3-2x\right)\left(x-4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+12x+3x-12-2x^{2}+8x}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Do the multiplications in 3x\left(x+4\right)+\left(3-2x\right)\left(x-4\right).
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{15x-12}{2}
Combine like terms in 3x^{2}+12x+3x-12-2x^{2}+8x.
\frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)}-\frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x-4\right)\left(x+4\right) and 2 is 2x\left(x-4\right)\left(x+4\right). Multiply \frac{15x-12}{2} times \frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}.
\frac{x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)}
Since \frac{x^{2}+23x-12}{2x\left(x-4\right)\left(x+4\right)} and \frac{\left(15x-12\right)x\left(x-4\right)\left(x+4\right)}{2x\left(x-4\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x}{2x\left(x-4\right)\left(x+4\right)}
Do the multiplications in x^{2}+23x-12-\left(15x-12\right)x\left(x-4\right)\left(x+4\right).
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x\left(x-4\right)\left(x+4\right)}
Combine like terms in x^{2}+23x-12-15x^{4}+240x^{2}+12x^{3}-192x.
\frac{241x^{2}-169x-12-15x^{4}+12x^{3}}{2x^{3}-32x}
Expand 2x\left(x-4\right)\left(x+4\right).