Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2\left(x-2\right)}+\frac{1}{x+2}
Factor 2x-4.
\frac{3\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x-2\right) and x+2 is 2\left(x-2\right)\left(x+2\right). Multiply \frac{3}{2\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{2\left(x-2\right)}{2\left(x-2\right)}.
\frac{3\left(x+2\right)+2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}
Since \frac{3\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)} and \frac{2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{3x+6+2x-4}{2\left(x-2\right)\left(x+2\right)}
Do the multiplications in 3\left(x+2\right)+2\left(x-2\right).
\frac{5x+2}{2\left(x-2\right)\left(x+2\right)}
Combine like terms in 3x+6+2x-4.
\frac{5x+2}{2x^{2}-8}
Expand 2\left(x-2\right)\left(x+2\right).