Solve for x
x=1
x=\frac{3}{8}=0.375
Graph
Share
Copied to clipboard
\left(3x-1\right)\times 3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
Variable x cannot be equal to any of the values \frac{1}{3},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(3x-1\right), the least common multiple of 2x-1,1-3x.
9x-3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
Use the distributive property to multiply 3x-1 by 3.
9x-3-\left(2-4x\right)=4\left(2x-1\right)\left(3x-1\right)
Use the distributive property to multiply 1-2x by 2.
9x-3-2+4x=4\left(2x-1\right)\left(3x-1\right)
To find the opposite of 2-4x, find the opposite of each term.
9x-5+4x=4\left(2x-1\right)\left(3x-1\right)
Subtract 2 from -3 to get -5.
13x-5=4\left(2x-1\right)\left(3x-1\right)
Combine 9x and 4x to get 13x.
13x-5=\left(8x-4\right)\left(3x-1\right)
Use the distributive property to multiply 4 by 2x-1.
13x-5=24x^{2}-20x+4
Use the distributive property to multiply 8x-4 by 3x-1 and combine like terms.
13x-5-24x^{2}=-20x+4
Subtract 24x^{2} from both sides.
13x-5-24x^{2}+20x=4
Add 20x to both sides.
33x-5-24x^{2}=4
Combine 13x and 20x to get 33x.
33x-5-24x^{2}-4=0
Subtract 4 from both sides.
33x-9-24x^{2}=0
Subtract 4 from -5 to get -9.
-24x^{2}+33x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\left(-24\right)\left(-9\right)}}{2\left(-24\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -24 for a, 33 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-24\right)\left(-9\right)}}{2\left(-24\right)}
Square 33.
x=\frac{-33±\sqrt{1089+96\left(-9\right)}}{2\left(-24\right)}
Multiply -4 times -24.
x=\frac{-33±\sqrt{1089-864}}{2\left(-24\right)}
Multiply 96 times -9.
x=\frac{-33±\sqrt{225}}{2\left(-24\right)}
Add 1089 to -864.
x=\frac{-33±15}{2\left(-24\right)}
Take the square root of 225.
x=\frac{-33±15}{-48}
Multiply 2 times -24.
x=-\frac{18}{-48}
Now solve the equation x=\frac{-33±15}{-48} when ± is plus. Add -33 to 15.
x=\frac{3}{8}
Reduce the fraction \frac{-18}{-48} to lowest terms by extracting and canceling out 6.
x=-\frac{48}{-48}
Now solve the equation x=\frac{-33±15}{-48} when ± is minus. Subtract 15 from -33.
x=1
Divide -48 by -48.
x=\frac{3}{8} x=1
The equation is now solved.
\left(3x-1\right)\times 3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
Variable x cannot be equal to any of the values \frac{1}{3},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(3x-1\right), the least common multiple of 2x-1,1-3x.
9x-3-\left(1-2x\right)\times 2=4\left(2x-1\right)\left(3x-1\right)
Use the distributive property to multiply 3x-1 by 3.
9x-3-\left(2-4x\right)=4\left(2x-1\right)\left(3x-1\right)
Use the distributive property to multiply 1-2x by 2.
9x-3-2+4x=4\left(2x-1\right)\left(3x-1\right)
To find the opposite of 2-4x, find the opposite of each term.
9x-5+4x=4\left(2x-1\right)\left(3x-1\right)
Subtract 2 from -3 to get -5.
13x-5=4\left(2x-1\right)\left(3x-1\right)
Combine 9x and 4x to get 13x.
13x-5=\left(8x-4\right)\left(3x-1\right)
Use the distributive property to multiply 4 by 2x-1.
13x-5=24x^{2}-20x+4
Use the distributive property to multiply 8x-4 by 3x-1 and combine like terms.
13x-5-24x^{2}=-20x+4
Subtract 24x^{2} from both sides.
13x-5-24x^{2}+20x=4
Add 20x to both sides.
33x-5-24x^{2}=4
Combine 13x and 20x to get 33x.
33x-24x^{2}=4+5
Add 5 to both sides.
33x-24x^{2}=9
Add 4 and 5 to get 9.
-24x^{2}+33x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-24x^{2}+33x}{-24}=\frac{9}{-24}
Divide both sides by -24.
x^{2}+\frac{33}{-24}x=\frac{9}{-24}
Dividing by -24 undoes the multiplication by -24.
x^{2}-\frac{11}{8}x=\frac{9}{-24}
Reduce the fraction \frac{33}{-24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{8}x=-\frac{3}{8}
Reduce the fraction \frac{9}{-24} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{11}{8}x+\left(-\frac{11}{16}\right)^{2}=-\frac{3}{8}+\left(-\frac{11}{16}\right)^{2}
Divide -\frac{11}{8}, the coefficient of the x term, by 2 to get -\frac{11}{16}. Then add the square of -\frac{11}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{8}x+\frac{121}{256}=-\frac{3}{8}+\frac{121}{256}
Square -\frac{11}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{8}x+\frac{121}{256}=\frac{25}{256}
Add -\frac{3}{8} to \frac{121}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{16}\right)^{2}=\frac{25}{256}
Factor x^{2}-\frac{11}{8}x+\frac{121}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{16}\right)^{2}}=\sqrt{\frac{25}{256}}
Take the square root of both sides of the equation.
x-\frac{11}{16}=\frac{5}{16} x-\frac{11}{16}=-\frac{5}{16}
Simplify.
x=1 x=\frac{3}{8}
Add \frac{11}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}