Solve for x
x=\frac{3}{2\left(3y+5\right)}
y\neq -\frac{5}{3}
Solve for y
y=-\frac{5}{3}+\frac{1}{2x}
x\neq 0
Graph
Share
Copied to clipboard
3-3y\times 2x=10x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x.
3-6yx=10x
Multiply -3 and 2 to get -6.
3-6yx-10x=0
Subtract 10x from both sides.
-6yx-10x=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
\left(-6y-10\right)x=-3
Combine all terms containing x.
\frac{\left(-6y-10\right)x}{-6y-10}=-\frac{3}{-6y-10}
Divide both sides by -6y-10.
x=-\frac{3}{-6y-10}
Dividing by -6y-10 undoes the multiplication by -6y-10.
x=\frac{3}{2\left(3y+5\right)}
Divide -3 by -6y-10.
x=\frac{3}{2\left(3y+5\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
3-3y\times 2x=10x
Multiply both sides of the equation by 2x.
3-6yx=10x
Multiply -3 and 2 to get -6.
-6yx=10x-3
Subtract 3 from both sides.
\left(-6x\right)y=10x-3
The equation is in standard form.
\frac{\left(-6x\right)y}{-6x}=\frac{10x-3}{-6x}
Divide both sides by -6x.
y=\frac{10x-3}{-6x}
Dividing by -6x undoes the multiplication by -6x.
y=-\frac{5}{3}+\frac{1}{2x}
Divide 10x-3 by -6x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}