Evaluate
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Expand
-\frac{3\left(x^{4}-x+2\right)}{2\left(x-2\right)x^{4}}
Graph
Share
Copied to clipboard
\frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}}-\frac{2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x^{4} and x+2 is 2\left(x+2\right)x^{4}. Multiply \frac{3}{2x^{4}} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{2x^{4}}{2x^{4}}.
\frac{3\left(x+2\right)-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Since \frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}} and \frac{2x^{4}}{2\left(x+2\right)x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Do the multiplications in 3\left(x+2\right)-2x^{4}.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2\left(x-2\right)\left(x+2\right)}
Factor 2x^{2}-8.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}-\frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+2\right)x^{4} and 2\left(x-2\right)\left(x+2\right) is 2\left(x-2\right)\left(x+2\right)x^{4}. Multiply \frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}} times \frac{x-2}{x-2}. Multiply \frac{x+10}{2\left(x-2\right)\left(x+2\right)} times \frac{x^{4}}{x^{4}}.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Since \frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}} and \frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Do the multiplications in \left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}.
\frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Combine like terms in 3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}.
\frac{3\left(x+2\right)\left(-x^{4}+x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}
Factor the expressions that are not already factored in \frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}.
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(-x^{4}+x-2\right)}{2x^{5}-4x^{4}}
Expand 2\left(x-2\right)x^{4}.
\frac{-3x^{4}+3x-6}{2x^{5}-4x^{4}}
Use the distributive property to multiply 3 by -x^{4}+x-2.
\frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}}-\frac{2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x^{4} and x+2 is 2\left(x+2\right)x^{4}. Multiply \frac{3}{2x^{4}} times \frac{x+2}{x+2}. Multiply \frac{1}{x+2} times \frac{2x^{4}}{2x^{4}}.
\frac{3\left(x+2\right)-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Since \frac{3\left(x+2\right)}{2\left(x+2\right)x^{4}} and \frac{2x^{4}}{2\left(x+2\right)x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2x^{2}-8}
Do the multiplications in 3\left(x+2\right)-2x^{4}.
\frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}}-\frac{x+10}{2\left(x-2\right)\left(x+2\right)}
Factor 2x^{2}-8.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}-\frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+2\right)x^{4} and 2\left(x-2\right)\left(x+2\right) is 2\left(x-2\right)\left(x+2\right)x^{4}. Multiply \frac{3x+6-2x^{4}}{2\left(x+2\right)x^{4}} times \frac{x-2}{x-2}. Multiply \frac{x+10}{2\left(x-2\right)\left(x+2\right)} times \frac{x^{4}}{x^{4}}.
\frac{\left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Since \frac{\left(3x+6-2x^{4}\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}} and \frac{\left(x+10\right)x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Do the multiplications in \left(3x+6-2x^{4}\right)\left(x-2\right)-\left(x+10\right)x^{4}.
\frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}
Combine like terms in 3x^{2}-6x+6x-12-2x^{5}+4x^{4}-x^{5}-10x^{4}.
\frac{3\left(x+2\right)\left(-x^{4}+x-2\right)}{2\left(x-2\right)\left(x+2\right)x^{4}}
Factor the expressions that are not already factored in \frac{3x^{2}-12-3x^{5}-6x^{4}}{2\left(x-2\right)\left(x+2\right)x^{4}}.
\frac{3\left(-x^{4}+x-2\right)}{2\left(x-2\right)x^{4}}
Cancel out x+2 in both numerator and denominator.
\frac{3\left(-x^{4}+x-2\right)}{2x^{5}-4x^{4}}
Expand 2\left(x-2\right)x^{4}.
\frac{-3x^{4}+3x-6}{2x^{5}-4x^{4}}
Use the distributive property to multiply 3 by -x^{4}+x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}