Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(2x-1\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Variable x cannot be equal to any of the values -2,0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2x\left(2x-1\right)\left(x+2\right), the least common multiple of 2x+4,1-2x,x,x^{2}+2x.
\left(2x^{2}-x\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply x by 2x-1.
6x^{2}-3x+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x^{2}-x by 3.
6x^{2}-3x+4x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x by 2+x.
6x^{2}+x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine -3x and 4x to get x.
8x^{2}+x+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine 6x^{2} and 2x^{2} to get 8x^{2}.
8x^{2}+x+\left(4x-2\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2 by 2x-1.
8x^{2}+x+4x^{2}+6x-4=\left(4x-2\right)\times 2
Use the distributive property to multiply 4x-2 by x+2 and combine like terms.
12x^{2}+x+6x-4=\left(4x-2\right)\times 2
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+7x-4=\left(4x-2\right)\times 2
Combine x and 6x to get 7x.
12x^{2}+7x-4=8x-4
Use the distributive property to multiply 4x-2 by 2.
12x^{2}+7x-4-8x=-4
Subtract 8x from both sides.
12x^{2}-x-4=-4
Combine 7x and -8x to get -x.
12x^{2}-x-4+4=0
Add 4 to both sides.
12x^{2}-x=0
Add -4 and 4 to get 0.
x\left(12x-1\right)=0
Factor out x.
x=0 x=\frac{1}{12}
To find equation solutions, solve x=0 and 12x-1=0.
x=\frac{1}{12}
Variable x cannot be equal to 0.
x\left(2x-1\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Variable x cannot be equal to any of the values -2,0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2x\left(2x-1\right)\left(x+2\right), the least common multiple of 2x+4,1-2x,x,x^{2}+2x.
\left(2x^{2}-x\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply x by 2x-1.
6x^{2}-3x+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x^{2}-x by 3.
6x^{2}-3x+4x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x by 2+x.
6x^{2}+x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine -3x and 4x to get x.
8x^{2}+x+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine 6x^{2} and 2x^{2} to get 8x^{2}.
8x^{2}+x+\left(4x-2\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2 by 2x-1.
8x^{2}+x+4x^{2}+6x-4=\left(4x-2\right)\times 2
Use the distributive property to multiply 4x-2 by x+2 and combine like terms.
12x^{2}+x+6x-4=\left(4x-2\right)\times 2
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+7x-4=\left(4x-2\right)\times 2
Combine x and 6x to get 7x.
12x^{2}+7x-4=8x-4
Use the distributive property to multiply 4x-2 by 2.
12x^{2}+7x-4-8x=-4
Subtract 8x from both sides.
12x^{2}-x-4=-4
Combine 7x and -8x to get -x.
12x^{2}-x-4+4=0
Add 4 to both sides.
12x^{2}-x=0
Add -4 and 4 to get 0.
x=\frac{-\left(-1\right)±\sqrt{1}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2\times 12}
Take the square root of 1.
x=\frac{1±1}{2\times 12}
The opposite of -1 is 1.
x=\frac{1±1}{24}
Multiply 2 times 12.
x=\frac{2}{24}
Now solve the equation x=\frac{1±1}{24} when ± is plus. Add 1 to 1.
x=\frac{1}{12}
Reduce the fraction \frac{2}{24} to lowest terms by extracting and canceling out 2.
x=\frac{0}{24}
Now solve the equation x=\frac{1±1}{24} when ± is minus. Subtract 1 from 1.
x=0
Divide 0 by 24.
x=\frac{1}{12} x=0
The equation is now solved.
x=\frac{1}{12}
Variable x cannot be equal to 0.
x\left(2x-1\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Variable x cannot be equal to any of the values -2,0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 2x\left(2x-1\right)\left(x+2\right), the least common multiple of 2x+4,1-2x,x,x^{2}+2x.
\left(2x^{2}-x\right)\times 3+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply x by 2x-1.
6x^{2}-3x+2x\left(2+x\right)+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x^{2}-x by 3.
6x^{2}-3x+4x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2x by 2+x.
6x^{2}+x+2x^{2}+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine -3x and 4x to get x.
8x^{2}+x+2\left(2x-1\right)\left(x+2\right)=\left(4x-2\right)\times 2
Combine 6x^{2} and 2x^{2} to get 8x^{2}.
8x^{2}+x+\left(4x-2\right)\left(x+2\right)=\left(4x-2\right)\times 2
Use the distributive property to multiply 2 by 2x-1.
8x^{2}+x+4x^{2}+6x-4=\left(4x-2\right)\times 2
Use the distributive property to multiply 4x-2 by x+2 and combine like terms.
12x^{2}+x+6x-4=\left(4x-2\right)\times 2
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+7x-4=\left(4x-2\right)\times 2
Combine x and 6x to get 7x.
12x^{2}+7x-4=8x-4
Use the distributive property to multiply 4x-2 by 2.
12x^{2}+7x-4-8x=-4
Subtract 8x from both sides.
12x^{2}-x-4=-4
Combine 7x and -8x to get -x.
12x^{2}-x=-4+4
Add 4 to both sides.
12x^{2}-x=0
Add -4 and 4 to get 0.
\frac{12x^{2}-x}{12}=\frac{0}{12}
Divide both sides by 12.
x^{2}-\frac{1}{12}x=\frac{0}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{1}{12}x=0
Divide 0 by 12.
x^{2}-\frac{1}{12}x+\left(-\frac{1}{24}\right)^{2}=\left(-\frac{1}{24}\right)^{2}
Divide -\frac{1}{12}, the coefficient of the x term, by 2 to get -\frac{1}{24}. Then add the square of -\frac{1}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{12}x+\frac{1}{576}=\frac{1}{576}
Square -\frac{1}{24} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{24}\right)^{2}=\frac{1}{576}
Factor x^{2}-\frac{1}{12}x+\frac{1}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{24}\right)^{2}}=\sqrt{\frac{1}{576}}
Take the square root of both sides of the equation.
x-\frac{1}{24}=\frac{1}{24} x-\frac{1}{24}=-\frac{1}{24}
Simplify.
x=\frac{1}{12} x=0
Add \frac{1}{24} to both sides of the equation.
x=\frac{1}{12}
Variable x cannot be equal to 0.