Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{2\left(x+6\right)}-\frac{x-15}{\left(x-8\right)\left(x+6\right)}
Factor 2x+12. Factor x^{2}-2x-48.
\frac{3\left(x-8\right)}{2\left(x-8\right)\left(x+6\right)}-\frac{2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+6\right) and \left(x-8\right)\left(x+6\right) is 2\left(x-8\right)\left(x+6\right). Multiply \frac{3}{2\left(x+6\right)} times \frac{x-8}{x-8}. Multiply \frac{x-15}{\left(x-8\right)\left(x+6\right)} times \frac{2}{2}.
\frac{3\left(x-8\right)-2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)}
Since \frac{3\left(x-8\right)}{2\left(x-8\right)\left(x+6\right)} and \frac{2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-24-2x+30}{2\left(x-8\right)\left(x+6\right)}
Do the multiplications in 3\left(x-8\right)-2\left(x-15\right).
\frac{x+6}{2\left(x-8\right)\left(x+6\right)}
Combine like terms in 3x-24-2x+30.
\frac{1}{2\left(x-8\right)}
Cancel out x+6 in both numerator and denominator.
\frac{1}{2x-16}
Expand 2\left(x-8\right).
\frac{3}{2\left(x+6\right)}-\frac{x-15}{\left(x-8\right)\left(x+6\right)}
Factor 2x+12. Factor x^{2}-2x-48.
\frac{3\left(x-8\right)}{2\left(x-8\right)\left(x+6\right)}-\frac{2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+6\right) and \left(x-8\right)\left(x+6\right) is 2\left(x-8\right)\left(x+6\right). Multiply \frac{3}{2\left(x+6\right)} times \frac{x-8}{x-8}. Multiply \frac{x-15}{\left(x-8\right)\left(x+6\right)} times \frac{2}{2}.
\frac{3\left(x-8\right)-2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)}
Since \frac{3\left(x-8\right)}{2\left(x-8\right)\left(x+6\right)} and \frac{2\left(x-15\right)}{2\left(x-8\right)\left(x+6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x-24-2x+30}{2\left(x-8\right)\left(x+6\right)}
Do the multiplications in 3\left(x-8\right)-2\left(x-15\right).
\frac{x+6}{2\left(x-8\right)\left(x+6\right)}
Combine like terms in 3x-24-2x+30.
\frac{1}{2\left(x-8\right)}
Cancel out x+6 in both numerator and denominator.
\frac{1}{2x-16}
Expand 2\left(x-8\right).