Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\left(2x-1\right)\times 3=\left(2x+1\right)\times 2-\left(x+1\right)
Variable x cannot be equal to any of the values -\frac{1}{2},\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-1\right)\left(2x+1\right), the least common multiple of 2x+1,2x-1,4x^{2}-1.
6x-3=\left(2x+1\right)\times 2-\left(x+1\right)
Use the distributive property to multiply 2x-1 by 3.
6x-3=4x+2-\left(x+1\right)
Use the distributive property to multiply 2x+1 by 2.
6x-3=4x+2-x-1
To find the opposite of x+1, find the opposite of each term.
6x-3=3x+2-1
Combine 4x and -x to get 3x.
6x-3=3x+1
Subtract 1 from 2 to get 1.
6x-3-3x=1
Subtract 3x from both sides.
3x-3=1
Combine 6x and -3x to get 3x.
3x=1+3
Add 3 to both sides.
3x=4
Add 1 and 3 to get 4.
x=\frac{4}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}