Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(2+\sqrt{55}\right)}{\left(2-\sqrt{55}\right)\left(2+\sqrt{55}\right)}
Rationalize the denominator of \frac{3}{2-\sqrt{55}} by multiplying numerator and denominator by 2+\sqrt{55}.
\frac{3\left(2+\sqrt{55}\right)}{2^{2}-\left(\sqrt{55}\right)^{2}}
Consider \left(2-\sqrt{55}\right)\left(2+\sqrt{55}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2+\sqrt{55}\right)}{4-55}
Square 2. Square \sqrt{55}.
\frac{3\left(2+\sqrt{55}\right)}{-51}
Subtract 55 from 4 to get -51.
-\frac{1}{17}\left(2+\sqrt{55}\right)
Divide 3\left(2+\sqrt{55}\right) by -51 to get -\frac{1}{17}\left(2+\sqrt{55}\right).
-\frac{1}{17}\times 2-\frac{1}{17}\sqrt{55}
Use the distributive property to multiply -\frac{1}{17} by 2+\sqrt{55}.
\frac{-2}{17}-\frac{1}{17}\sqrt{55}
Express -\frac{1}{17}\times 2 as a single fraction.
-\frac{2}{17}-\frac{1}{17}\sqrt{55}
Fraction \frac{-2}{17} can be rewritten as -\frac{2}{17} by extracting the negative sign.