Evaluate
\frac{-31\sqrt{5}-63}{11}\approx -12.028918846
Share
Copied to clipboard
\frac{3\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+\frac{2+\sqrt{5}}{4+\sqrt{5}}
Rationalize the denominator of \frac{3}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\frac{3\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+\frac{2+\sqrt{5}}{4+\sqrt{5}}
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2+\sqrt{5}\right)}{4-5}+\frac{2+\sqrt{5}}{4+\sqrt{5}}
Square 2. Square \sqrt{5}.
\frac{3\left(2+\sqrt{5}\right)}{-1}+\frac{2+\sqrt{5}}{4+\sqrt{5}}
Subtract 5 from 4 to get -1.
-3\left(2+\sqrt{5}\right)+\frac{2+\sqrt{5}}{4+\sqrt{5}}
Anything divided by -1 gives its opposite.
-3\left(2+\sqrt{5}\right)+\frac{\left(2+\sqrt{5}\right)\left(4-\sqrt{5}\right)}{\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)}
Rationalize the denominator of \frac{2+\sqrt{5}}{4+\sqrt{5}} by multiplying numerator and denominator by 4-\sqrt{5}.
-3\left(2+\sqrt{5}\right)+\frac{\left(2+\sqrt{5}\right)\left(4-\sqrt{5}\right)}{4^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-3\left(2+\sqrt{5}\right)+\frac{\left(2+\sqrt{5}\right)\left(4-\sqrt{5}\right)}{16-5}
Square 4. Square \sqrt{5}.
-3\left(2+\sqrt{5}\right)+\frac{\left(2+\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Subtract 5 from 16 to get 11.
-6-3\sqrt{5}+\frac{\left(2+\sqrt{5}\right)\left(4-\sqrt{5}\right)}{11}
Use the distributive property to multiply -3 by 2+\sqrt{5}.
-6-3\sqrt{5}+\frac{8-2\sqrt{5}+4\sqrt{5}-\left(\sqrt{5}\right)^{2}}{11}
Apply the distributive property by multiplying each term of 2+\sqrt{5} by each term of 4-\sqrt{5}.
-6-3\sqrt{5}+\frac{8+2\sqrt{5}-\left(\sqrt{5}\right)^{2}}{11}
Combine -2\sqrt{5} and 4\sqrt{5} to get 2\sqrt{5}.
-6-3\sqrt{5}+\frac{8+2\sqrt{5}-5}{11}
The square of \sqrt{5} is 5.
-6-3\sqrt{5}+\frac{3+2\sqrt{5}}{11}
Subtract 5 from 8 to get 3.
\frac{11\left(-6-3\sqrt{5}\right)}{11}+\frac{3+2\sqrt{5}}{11}
To add or subtract expressions, expand them to make their denominators the same. Multiply -6-3\sqrt{5} times \frac{11}{11}.
\frac{11\left(-6-3\sqrt{5}\right)+3+2\sqrt{5}}{11}
Since \frac{11\left(-6-3\sqrt{5}\right)}{11} and \frac{3+2\sqrt{5}}{11} have the same denominator, add them by adding their numerators.
\frac{-66-33\sqrt{5}+3+2\sqrt{5}}{11}
Do the multiplications in 11\left(-6-3\sqrt{5}\right)+3+2\sqrt{5}.
\frac{-63-31\sqrt{5}}{11}
Do the calculations in -66-33\sqrt{5}+3+2\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}