Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{4}{\sqrt{3}+1}
Rationalize the denominator of \frac{3}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{3}+1}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2+\sqrt{3}\right)}{4-3}+\frac{4}{\sqrt{3}+1}
Square 2. Square \sqrt{3}.
\frac{3\left(2+\sqrt{3}\right)}{1}+\frac{4}{\sqrt{3}+1}
Subtract 3 from 4 to get 1.
3\left(2+\sqrt{3}\right)+\frac{4}{\sqrt{3}+1}
Anything divided by one gives itself.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{4}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
3\left(2+\sqrt{3}\right)+\frac{4\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
3\left(2+\sqrt{3}\right)+2\left(\sqrt{3}-1\right)
Divide 4\left(\sqrt{3}-1\right) by 2 to get 2\left(\sqrt{3}-1\right).
6+3\sqrt{3}+2\left(\sqrt{3}-1\right)
Use the distributive property to multiply 3 by 2+\sqrt{3}.
6+3\sqrt{3}+2\sqrt{3}-2
Use the distributive property to multiply 2 by \sqrt{3}-1.
6+5\sqrt{3}-2
Combine 3\sqrt{3} and 2\sqrt{3} to get 5\sqrt{3}.
4+5\sqrt{3}
Subtract 2 from 6 to get 4.