Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=0
Graph
Share
Copied to clipboard
x\left(\frac{3}{2}x+1\right)=0
Factor out x.
x=0 x=-\frac{2}{3}
To find equation solutions, solve x=0 and \frac{3x}{2}+1=0.
\frac{3}{2}x^{2}+x=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}}}{2\times \frac{3}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{2} for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\times \frac{3}{2}}
Take the square root of 1^{2}.
x=\frac{-1±1}{3}
Multiply 2 times \frac{3}{2}.
x=\frac{0}{3}
Now solve the equation x=\frac{-1±1}{3} when ± is plus. Add -1 to 1.
x=0
Divide 0 by 3.
x=-\frac{2}{3}
Now solve the equation x=\frac{-1±1}{3} when ± is minus. Subtract 1 from -1.
x=0 x=-\frac{2}{3}
The equation is now solved.
\frac{3}{2}x^{2}+x=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{2}x^{2}+x}{\frac{3}{2}}=\frac{0}{\frac{3}{2}}
Divide both sides of the equation by \frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{1}{\frac{3}{2}}x=\frac{0}{\frac{3}{2}}
Dividing by \frac{3}{2} undoes the multiplication by \frac{3}{2}.
x^{2}+\frac{2}{3}x=\frac{0}{\frac{3}{2}}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
x^{2}+\frac{2}{3}x=0
Divide 0 by \frac{3}{2} by multiplying 0 by the reciprocal of \frac{3}{2}.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
Simplify.
x=0 x=-\frac{2}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}