Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+6-3x-\left(9-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Multiply both sides of the equation by 4, the least common multiple of 2,4.
3x+6-\left(9-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Combine 6x and -3x to get 3x.
3x+6-9-\left(-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
To find the opposite of 9-6x, find the opposite of each term.
3x+6-9+6x=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
The opposite of -6x is 6x.
3x-3+6x=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Subtract 9 from 6 to get -3.
9x-3=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Combine 3x and 6x to get 9x.
9x-3=4\times \frac{5x-11}{2}+12-2\left(1-x\right)x
Use the distributive property to multiply 4 by \frac{5x-11}{2}+3.
9x-3=2\left(5x-11\right)+12-2\left(1-x\right)x
Cancel out 2, the greatest common factor in 4 and 2.
9x-3=10x-22+12-2\left(1-x\right)x
Use the distributive property to multiply 2 by 5x-11.
9x-3=10x-10-2\left(1-x\right)x
Add -22 and 12 to get -10.
9x-3+2\left(1-x\right)x=10x-10
Add 2\left(1-x\right)x to both sides.
9x-3+\left(2-2x\right)x=10x-10
Use the distributive property to multiply 2 by 1-x.
9x-3+2x-2x^{2}=10x-10
Use the distributive property to multiply 2-2x by x.
11x-3-2x^{2}=10x-10
Combine 9x and 2x to get 11x.
11x-3-2x^{2}-10x=-10
Subtract 10x from both sides.
x-3-2x^{2}=-10
Combine 11x and -10x to get x.
x-3-2x^{2}+10=0
Add 10 to both sides.
x+7-2x^{2}=0
Add -3 and 10 to get 7.
-2x^{2}+x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\times 7}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)\times 7}}{2\left(-2\right)}
Square 1.
x=\frac{-1±\sqrt{1+8\times 7}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-1±\sqrt{1+56}}{2\left(-2\right)}
Multiply 8 times 7.
x=\frac{-1±\sqrt{57}}{2\left(-2\right)}
Add 1 to 56.
x=\frac{-1±\sqrt{57}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{57}-1}{-4}
Now solve the equation x=\frac{-1±\sqrt{57}}{-4} when ± is plus. Add -1 to \sqrt{57}.
x=\frac{1-\sqrt{57}}{4}
Divide -1+\sqrt{57} by -4.
x=\frac{-\sqrt{57}-1}{-4}
Now solve the equation x=\frac{-1±\sqrt{57}}{-4} when ± is minus. Subtract \sqrt{57} from -1.
x=\frac{\sqrt{57}+1}{4}
Divide -1-\sqrt{57} by -4.
x=\frac{1-\sqrt{57}}{4} x=\frac{\sqrt{57}+1}{4}
The equation is now solved.
6x+6-3x-\left(9-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Multiply both sides of the equation by 4, the least common multiple of 2,4.
3x+6-\left(9-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Combine 6x and -3x to get 3x.
3x+6-9-\left(-6x\right)=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
To find the opposite of 9-6x, find the opposite of each term.
3x+6-9+6x=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
The opposite of -6x is 6x.
3x-3+6x=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Subtract 9 from 6 to get -3.
9x-3=4\left(\frac{5x-11}{2}+3\right)-2\left(1-x\right)x
Combine 3x and 6x to get 9x.
9x-3=4\times \frac{5x-11}{2}+12-2\left(1-x\right)x
Use the distributive property to multiply 4 by \frac{5x-11}{2}+3.
9x-3=2\left(5x-11\right)+12-2\left(1-x\right)x
Cancel out 2, the greatest common factor in 4 and 2.
9x-3=10x-22+12-2\left(1-x\right)x
Use the distributive property to multiply 2 by 5x-11.
9x-3=10x-10-2\left(1-x\right)x
Add -22 and 12 to get -10.
9x-3+2\left(1-x\right)x=10x-10
Add 2\left(1-x\right)x to both sides.
9x-3+\left(2-2x\right)x=10x-10
Use the distributive property to multiply 2 by 1-x.
9x-3+2x-2x^{2}=10x-10
Use the distributive property to multiply 2-2x by x.
11x-3-2x^{2}=10x-10
Combine 9x and 2x to get 11x.
11x-3-2x^{2}-10x=-10
Subtract 10x from both sides.
x-3-2x^{2}=-10
Combine 11x and -10x to get x.
x-2x^{2}=-10+3
Add 3 to both sides.
x-2x^{2}=-7
Add -10 and 3 to get -7.
-2x^{2}+x=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+x}{-2}=-\frac{7}{-2}
Divide both sides by -2.
x^{2}+\frac{1}{-2}x=-\frac{7}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-\frac{1}{2}x=-\frac{7}{-2}
Divide 1 by -2.
x^{2}-\frac{1}{2}x=\frac{7}{2}
Divide -7 by -2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{7}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{57}{16}
Add \frac{7}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{57}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{57}}{4} x-\frac{1}{4}=-\frac{\sqrt{57}}{4}
Simplify.
x=\frac{\sqrt{57}+1}{4} x=\frac{1-\sqrt{57}}{4}
Add \frac{1}{4} to both sides of the equation.