Evaluate
\frac{221}{90}\approx 2.455555556
Factor
\frac{13 \cdot 17}{2 \cdot 3 ^ {2} \cdot 5} = 2\frac{41}{90} = 2.4555555555555557
Share
Copied to clipboard
\frac{3}{2}-\frac{4}{3}\left(\frac{3}{15}-\frac{10}{15}\right)+\frac{1}{3}
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{3}{2}-\frac{4}{3}\times \frac{3-10}{15}+\frac{1}{3}
Since \frac{3}{15} and \frac{10}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{2}-\frac{4}{3}\left(-\frac{7}{15}\right)+\frac{1}{3}
Subtract 10 from 3 to get -7.
\frac{3}{2}-\frac{4\left(-7\right)}{3\times 15}+\frac{1}{3}
Multiply \frac{4}{3} times -\frac{7}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}-\frac{-28}{45}+\frac{1}{3}
Do the multiplications in the fraction \frac{4\left(-7\right)}{3\times 15}.
\frac{3}{2}-\left(-\frac{28}{45}\right)+\frac{1}{3}
Fraction \frac{-28}{45} can be rewritten as -\frac{28}{45} by extracting the negative sign.
\frac{3}{2}+\frac{28}{45}+\frac{1}{3}
The opposite of -\frac{28}{45} is \frac{28}{45}.
\frac{135}{90}+\frac{56}{90}+\frac{1}{3}
Least common multiple of 2 and 45 is 90. Convert \frac{3}{2} and \frac{28}{45} to fractions with denominator 90.
\frac{135+56}{90}+\frac{1}{3}
Since \frac{135}{90} and \frac{56}{90} have the same denominator, add them by adding their numerators.
\frac{191}{90}+\frac{1}{3}
Add 135 and 56 to get 191.
\frac{191}{90}+\frac{30}{90}
Least common multiple of 90 and 3 is 90. Convert \frac{191}{90} and \frac{1}{3} to fractions with denominator 90.
\frac{191+30}{90}
Since \frac{191}{90} and \frac{30}{90} have the same denominator, add them by adding their numerators.
\frac{221}{90}
Add 191 and 30 to get 221.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}