Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3\left(-x+2\right)}{2\left(-x+2\right)}-\frac{3\times 2}{2\left(-x+2\right)}-\frac{2}{x^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2-x is 2\left(-x+2\right). Multiply \frac{3}{2} times \frac{-x+2}{-x+2}. Multiply \frac{3}{2-x} times \frac{2}{2}.
\frac{3\left(-x+2\right)-3\times 2}{2\left(-x+2\right)}-\frac{2}{x^{2}-4}
Since \frac{3\left(-x+2\right)}{2\left(-x+2\right)} and \frac{3\times 2}{2\left(-x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x+6-6}{2\left(-x+2\right)}-\frac{2}{x^{2}-4}
Do the multiplications in 3\left(-x+2\right)-3\times 2.
\frac{-3x}{2\left(-x+2\right)}-\frac{2}{x^{2}-4}
Combine like terms in -3x+6-6.
\frac{-3x}{2\left(-x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{-3x\left(-1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{2\times 2}{2\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(-x+2\right) and \left(x-2\right)\left(x+2\right) is 2\left(x-2\right)\left(x+2\right). Multiply \frac{-3x}{2\left(-x+2\right)} times \frac{-\left(x+2\right)}{-\left(x+2\right)}. Multiply \frac{2}{\left(x-2\right)\left(x+2\right)} times \frac{2}{2}.
\frac{-3x\left(-1\right)\left(x+2\right)-2\times 2}{2\left(x-2\right)\left(x+2\right)}
Since \frac{-3x\left(-1\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)} and \frac{2\times 2}{2\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}+6x-4}{2\left(x-2\right)\left(x+2\right)}
Do the multiplications in -3x\left(-1\right)\left(x+2\right)-2\times 2.
\frac{3x^{2}+6x-4}{2x^{2}-8}
Expand 2\left(x-2\right)\left(x+2\right).