Solve for x
x=-\frac{2}{43}\approx -0.046511628
Graph
Share
Copied to clipboard
6\left(\frac{3}{2}-\frac{1-x}{3}\right)-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
6\left(\frac{3\times 3}{6}-\frac{2\left(1-x\right)}{6}\right)-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{3}{2} times \frac{3}{3}. Multiply \frac{1-x}{3} times \frac{2}{2}.
6\times \frac{3\times 3-2\left(1-x\right)}{6}-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Since \frac{3\times 3}{6} and \frac{2\left(1-x\right)}{6} have the same denominator, subtract them by subtracting their numerators.
6\times \frac{9-2+2x}{6}-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Do the multiplications in 3\times 3-2\left(1-x\right).
6\times \frac{7+2x}{6}-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Combine like terms in 9-2+2x.
\frac{6\left(7+2x\right)}{6}-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Express 6\times \frac{7+2x}{6} as a single fraction.
7+2x-6\left(\frac{2x+1}{2}+5x\right)=12x-3\left(x-2\right)
Cancel out 6 and 6.
7+2x-6\left(\frac{2x+1}{2}+5x\right)=12x-3x+6
Use the distributive property to multiply -3 by x-2.
7+2x-6\left(\frac{2x+1}{2}+5x\right)=9x+6
Combine 12x and -3x to get 9x.
7+2x-6\left(x+\frac{1}{2}+5x\right)=9x+6
Divide each term of 2x+1 by 2 to get x+\frac{1}{2}.
7+2x-6\left(6x+\frac{1}{2}\right)=9x+6
Combine x and 5x to get 6x.
7+2x-36x-6\times \frac{1}{2}=9x+6
Use the distributive property to multiply -6 by 6x+\frac{1}{2}.
7+2x-36x+\frac{-6}{2}=9x+6
Multiply -6 and \frac{1}{2} to get \frac{-6}{2}.
7+2x-36x-3=9x+6
Divide -6 by 2 to get -3.
7-34x-3=9x+6
Combine 2x and -36x to get -34x.
4-34x=9x+6
Subtract 3 from 7 to get 4.
4-34x-9x=6
Subtract 9x from both sides.
4-43x=6
Combine -34x and -9x to get -43x.
-43x=6-4
Subtract 4 from both sides.
-43x=2
Subtract 4 from 6 to get 2.
x=\frac{2}{-43}
Divide both sides by -43.
x=-\frac{2}{43}
Fraction \frac{2}{-43} can be rewritten as -\frac{2}{43} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}