Solve for y
y=5
Graph
Share
Copied to clipboard
\frac{3}{2}y+\frac{3}{2}\left(-5\right)+10=2y
Use the distributive property to multiply \frac{3}{2} by y-5.
\frac{3}{2}y+\frac{3\left(-5\right)}{2}+10=2y
Express \frac{3}{2}\left(-5\right) as a single fraction.
\frac{3}{2}y+\frac{-15}{2}+10=2y
Multiply 3 and -5 to get -15.
\frac{3}{2}y-\frac{15}{2}+10=2y
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
\frac{3}{2}y-\frac{15}{2}+\frac{20}{2}=2y
Convert 10 to fraction \frac{20}{2}.
\frac{3}{2}y+\frac{-15+20}{2}=2y
Since -\frac{15}{2} and \frac{20}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}y+\frac{5}{2}=2y
Add -15 and 20 to get 5.
\frac{3}{2}y+\frac{5}{2}-2y=0
Subtract 2y from both sides.
-\frac{1}{2}y+\frac{5}{2}=0
Combine \frac{3}{2}y and -2y to get -\frac{1}{2}y.
-\frac{1}{2}y=-\frac{5}{2}
Subtract \frac{5}{2} from both sides. Anything subtracted from zero gives its negation.
y=-\frac{5}{2}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
y=\frac{-5\left(-2\right)}{2}
Express -\frac{5}{2}\left(-2\right) as a single fraction.
y=\frac{10}{2}
Multiply -5 and -2 to get 10.
y=5
Divide 10 by 2 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}