Solve for x
x=-19
Graph
Share
Copied to clipboard
24\left(\frac{3}{2}\left(x-5\right)-\frac{3}{2}x\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Multiply both sides of the equation by 24, the least common multiple of 2,4,6,8.
24\left(\frac{3}{2}x+\frac{3}{2}\left(-5\right)-\frac{3}{2}x\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Use the distributive property to multiply \frac{3}{2} by x-5.
24\left(\frac{3}{2}x+\frac{3\left(-5\right)}{2}-\frac{3}{2}x\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Express \frac{3}{2}\left(-5\right) as a single fraction.
24\left(\frac{3}{2}x+\frac{-15}{2}-\frac{3}{2}x\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Multiply 3 and -5 to get -15.
24\left(\frac{3}{2}x-\frac{15}{2}-\frac{3}{2}x\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
24\left(-\frac{15}{2}\right)-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Combine \frac{3}{2}x and -\frac{3}{2}x to get 0.
\frac{24\left(-15\right)}{2}-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Express 24\left(-\frac{15}{2}\right) as a single fraction.
\frac{-360}{2}-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Multiply 24 and -15 to get -360.
-180-18\left(4-\frac{x-2}{6}\right)=15\left(x-2\right)
Divide -360 by 2 to get -180.
-180-18\left(4-\frac{x-2}{6}\right)=15x-30
Use the distributive property to multiply 15 by x-2.
-180-18\left(4-\left(\frac{1}{6}x-\frac{1}{3}\right)\right)=15x-30
Divide each term of x-2 by 6 to get \frac{1}{6}x-\frac{1}{3}.
-180-18\left(4-\frac{1}{6}x-\left(-\frac{1}{3}\right)\right)=15x-30
To find the opposite of \frac{1}{6}x-\frac{1}{3}, find the opposite of each term.
-180-18\left(4-\frac{1}{6}x+\frac{1}{3}\right)=15x-30
The opposite of -\frac{1}{3} is \frac{1}{3}.
-180-18\left(\frac{12}{3}-\frac{1}{6}x+\frac{1}{3}\right)=15x-30
Convert 4 to fraction \frac{12}{3}.
-180-18\left(\frac{12+1}{3}-\frac{1}{6}x\right)=15x-30
Since \frac{12}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
-180-18\left(\frac{13}{3}-\frac{1}{6}x\right)=15x-30
Add 12 and 1 to get 13.
-180-18\times \frac{13}{3}-18\left(-\frac{1}{6}\right)x=15x-30
Use the distributive property to multiply -18 by \frac{13}{3}-\frac{1}{6}x.
-180+\frac{-18\times 13}{3}-18\left(-\frac{1}{6}\right)x=15x-30
Express -18\times \frac{13}{3} as a single fraction.
-180+\frac{-234}{3}-18\left(-\frac{1}{6}\right)x=15x-30
Multiply -18 and 13 to get -234.
-180-78-18\left(-\frac{1}{6}\right)x=15x-30
Divide -234 by 3 to get -78.
-180-78+\frac{-18\left(-1\right)}{6}x=15x-30
Express -18\left(-\frac{1}{6}\right) as a single fraction.
-180-78+\frac{18}{6}x=15x-30
Multiply -18 and -1 to get 18.
-180-78+3x=15x-30
Divide 18 by 6 to get 3.
-258+3x=15x-30
Subtract 78 from -180 to get -258.
-258+3x-15x=-30
Subtract 15x from both sides.
-258-12x=-30
Combine 3x and -15x to get -12x.
-12x=-30+258
Add 258 to both sides.
-12x=228
Add -30 and 258 to get 228.
x=\frac{228}{-12}
Divide both sides by -12.
x=-19
Divide 228 by -12 to get -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}