Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{2}s+\frac{3}{2}\left(-2\right)+1>-2\left(s-4\right)
Use the distributive property to multiply \frac{3}{2} by s-2.
\frac{3}{2}s+\frac{3\left(-2\right)}{2}+1>-2\left(s-4\right)
Express \frac{3}{2}\left(-2\right) as a single fraction.
\frac{3}{2}s+\frac{-6}{2}+1>-2\left(s-4\right)
Multiply 3 and -2 to get -6.
\frac{3}{2}s-3+1>-2\left(s-4\right)
Divide -6 by 2 to get -3.
\frac{3}{2}s-2>-2\left(s-4\right)
Add -3 and 1 to get -2.
\frac{3}{2}s-2>-2s+8
Use the distributive property to multiply -2 by s-4.
\frac{3}{2}s-2+2s>8
Add 2s to both sides.
\frac{7}{2}s-2>8
Combine \frac{3}{2}s and 2s to get \frac{7}{2}s.
\frac{7}{2}s>8+2
Add 2 to both sides.
\frac{7}{2}s>10
Add 8 and 2 to get 10.
s>10\times \frac{2}{7}
Multiply both sides by \frac{2}{7}, the reciprocal of \frac{7}{2}. Since \frac{7}{2} is positive, the inequality direction remains the same.
s>\frac{10\times 2}{7}
Express 10\times \frac{2}{7} as a single fraction.
s>\frac{20}{7}
Multiply 10 and 2 to get 20.