Solve for x
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
\frac{3}{2}\left(\frac{2}{3}\times \frac{1}{4}x+\frac{2}{3}+2\right)-\frac{7}{2}=\frac{2}{3}x
Use the distributive property to multiply \frac{2}{3} by \frac{1}{4}x+1.
\frac{3}{2}\left(\frac{2\times 1}{3\times 4}x+\frac{2}{3}+2\right)-\frac{7}{2}=\frac{2}{3}x
Multiply \frac{2}{3} times \frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{2}\left(\frac{2}{12}x+\frac{2}{3}+2\right)-\frac{7}{2}=\frac{2}{3}x
Do the multiplications in the fraction \frac{2\times 1}{3\times 4}.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2}{3}+2\right)-\frac{7}{2}=\frac{2}{3}x
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2}{3}+\frac{6}{3}\right)-\frac{7}{2}=\frac{2}{3}x
Convert 2 to fraction \frac{6}{3}.
\frac{3}{2}\left(\frac{1}{6}x+\frac{2+6}{3}\right)-\frac{7}{2}=\frac{2}{3}x
Since \frac{2}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{3}{2}\left(\frac{1}{6}x+\frac{8}{3}\right)-\frac{7}{2}=\frac{2}{3}x
Add 2 and 6 to get 8.
\frac{3}{2}\times \frac{1}{6}x+\frac{3}{2}\times \frac{8}{3}-\frac{7}{2}=\frac{2}{3}x
Use the distributive property to multiply \frac{3}{2} by \frac{1}{6}x+\frac{8}{3}.
\frac{3\times 1}{2\times 6}x+\frac{3}{2}\times \frac{8}{3}-\frac{7}{2}=\frac{2}{3}x
Multiply \frac{3}{2} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{12}x+\frac{3}{2}\times \frac{8}{3}-\frac{7}{2}=\frac{2}{3}x
Do the multiplications in the fraction \frac{3\times 1}{2\times 6}.
\frac{1}{4}x+\frac{3}{2}\times \frac{8}{3}-\frac{7}{2}=\frac{2}{3}x
Reduce the fraction \frac{3}{12} to lowest terms by extracting and canceling out 3.
\frac{1}{4}x+\frac{3\times 8}{2\times 3}-\frac{7}{2}=\frac{2}{3}x
Multiply \frac{3}{2} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}x+\frac{8}{2}-\frac{7}{2}=\frac{2}{3}x
Cancel out 3 in both numerator and denominator.
\frac{1}{4}x+4-\frac{7}{2}=\frac{2}{3}x
Divide 8 by 2 to get 4.
\frac{1}{4}x+\frac{8}{2}-\frac{7}{2}=\frac{2}{3}x
Convert 4 to fraction \frac{8}{2}.
\frac{1}{4}x+\frac{8-7}{2}=\frac{2}{3}x
Since \frac{8}{2} and \frac{7}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}x+\frac{1}{2}=\frac{2}{3}x
Subtract 7 from 8 to get 1.
\frac{1}{4}x+\frac{1}{2}-\frac{2}{3}x=0
Subtract \frac{2}{3}x from both sides.
-\frac{5}{12}x+\frac{1}{2}=0
Combine \frac{1}{4}x and -\frac{2}{3}x to get -\frac{5}{12}x.
-\frac{5}{12}x=-\frac{1}{2}
Subtract \frac{1}{2} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{1}{2}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{-\left(-12\right)}{2\times 5}
Multiply -\frac{1}{2} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{10}
Do the multiplications in the fraction \frac{-\left(-12\right)}{2\times 5}.
x=\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}