Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(\frac{\frac{3}{2}\times 2\sqrt{5}x\left(-\sqrt{15}\right)}{-\frac{1}{3}\sqrt{48}}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
factor(\frac{3\sqrt{5}x\left(-\sqrt{15}\right)}{-\frac{1}{3}\sqrt{48}}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Multiply \frac{3}{2} and 2 to get 3.
factor(\frac{3\sqrt{5}x\left(-\sqrt{15}\right)}{-\frac{1}{3}\times 4\sqrt{3}}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
factor(\frac{3\sqrt{5}x\left(-\sqrt{15}\right)}{-\frac{4}{3}\sqrt{3}}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Multiply -\frac{1}{3} and 4 to get -\frac{4}{3}.
factor(\frac{3\sqrt{5}x\left(-\sqrt{15}\right)\sqrt{3}}{-\frac{4}{3}\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Rationalize the denominator of \frac{3\sqrt{5}x\left(-\sqrt{15}\right)}{-\frac{4}{3}\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(\frac{3\sqrt{5}x\left(-\sqrt{15}\right)\sqrt{3}}{-\frac{4}{3}\times 3}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
The square of \sqrt{3} is 3.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-\frac{4}{3}\times 3}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Multiply -\frac{4}{3} and 3 to get -4.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{6}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{\left(1-\sqrt{2}\right)^{2}})
The square of \sqrt{3} is 3.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}})
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{1-2\sqrt{2}+2})
The square of \sqrt{2} is 2.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}+\sqrt{6}\right)\sqrt{3}}{3}+\sqrt{3-2\sqrt{2}})
Add 1 and 2 to get 3.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{\left(\sqrt{3}\right)^{2}+\sqrt{6}\sqrt{3}}{3}+\sqrt{3-2\sqrt{2}})
Use the distributive property to multiply \sqrt{3}+\sqrt{6} by \sqrt{3}.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{3+\sqrt{6}\sqrt{3}}{3}+\sqrt{3-2\sqrt{2}})
The square of \sqrt{3} is 3.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{3+\sqrt{3}\sqrt{2}\sqrt{3}}{3}+\sqrt{3-2\sqrt{2}})
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+\frac{3+3\sqrt{2}}{3}+\sqrt{3-2\sqrt{2}})
Multiply \sqrt{3} and \sqrt{3} to get 3.
factor(\frac{3\sqrt{15}x\left(-\sqrt{15}\right)}{-4}+1+\sqrt{2}+\sqrt{3-2\sqrt{2}})
Divide each term of 3+3\sqrt{2} by 3 to get 1+\sqrt{2}.
factor(\frac{-3\sqrt{15}x\sqrt{15}}{-4}+1+\sqrt{2}+\sqrt{3-2\sqrt{2}})
Multiply 3 and -1 to get -3.
factor(\frac{-3\times 15x}{-4}+1+\sqrt{2}+\sqrt{3-2\sqrt{2}})
Multiply \sqrt{15} and \sqrt{15} to get 15.
factor(\frac{-45x}{-4}+1+\sqrt{2}+\sqrt{3-2\sqrt{2}})
Multiply -3 and 15 to get -45.
\frac{45x+4+4\sqrt{2}+4\sqrt{3-2\sqrt{2}}}{4}
Factor out \frac{1}{4}.