Solve for x
x = -\frac{16}{5} = -3\frac{1}{5} = -3.2
Graph
Share
Copied to clipboard
18\left(-\frac{2}{3}\left(\frac{x}{4}-1\right)-2\right)-12x=24
Multiply both sides of the equation by 12, the least common multiple of 2,3,4.
18\left(-\frac{2}{3}\times \frac{x}{4}-\frac{2}{3}\left(-1\right)-2\right)-12x=24
Use the distributive property to multiply -\frac{2}{3} by \frac{x}{4}-1.
18\left(\frac{-2x}{3\times 4}-\frac{2}{3}\left(-1\right)-2\right)-12x=24
Multiply -\frac{2}{3} times \frac{x}{4} by multiplying numerator times numerator and denominator times denominator.
18\left(\frac{-x}{2\times 3}-\frac{2}{3}\left(-1\right)-2\right)-12x=24
Cancel out 2 in both numerator and denominator.
18\left(\frac{-x}{2\times 3}+\frac{2}{3}-2\right)-12x=24
Multiply -\frac{2}{3} and -1 to get \frac{2}{3}.
18\left(\frac{-x}{2\times 3}+\frac{2\times 2}{2\times 3}-2\right)-12x=24
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 3 and 3 is 2\times 3. Multiply \frac{2}{3} times \frac{2}{2}.
18\left(\frac{-x+2\times 2}{2\times 3}-2\right)-12x=24
Since \frac{-x}{2\times 3} and \frac{2\times 2}{2\times 3} have the same denominator, add them by adding their numerators.
18\left(\frac{-x+4}{2\times 3}-2\right)-12x=24
Do the multiplications in -x+2\times 2.
18\left(\frac{-x+4}{6}-2\right)-12x=24
Multiply 2 and 3 to get 6.
18\times \frac{-x+4}{6}-36-12x=24
Use the distributive property to multiply 18 by \frac{-x+4}{6}-2.
3\left(-x+4\right)-36-12x=24
Cancel out 6, the greatest common factor in 18 and 6.
-3x+12-36-12x=24
Use the distributive property to multiply 3 by -x+4.
-3x-24-12x=24
Subtract 36 from 12 to get -24.
-15x-24=24
Combine -3x and -12x to get -15x.
-15x=24+24
Add 24 to both sides.
-15x=48
Add 24 and 24 to get 48.
x=\frac{48}{-15}
Divide both sides by -15.
x=-\frac{16}{5}
Reduce the fraction \frac{48}{-15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}