Evaluate
\frac{9}{20}=0.45
Factor
\frac{3 ^ {2}}{2 ^ {2} \cdot 5} = 0.45
Share
Copied to clipboard
\frac{3}{10}+\frac{3}{5\times 8}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Multiply 2 and 5 to get 10.
\frac{3}{10}+\frac{3}{40}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Multiply 5 and 8 to get 40.
\frac{12}{40}+\frac{3}{40}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Least common multiple of 10 and 40 is 40. Convert \frac{3}{10} and \frac{3}{40} to fractions with denominator 40.
\frac{12+3}{40}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Since \frac{12}{40} and \frac{3}{40} have the same denominator, add them by adding their numerators.
\frac{15}{40}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Add 12 and 3 to get 15.
\frac{3}{8}+\frac{4}{8\times 12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Reduce the fraction \frac{15}{40} to lowest terms by extracting and canceling out 5.
\frac{3}{8}+\frac{4}{96}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Multiply 8 and 12 to get 96.
\frac{3}{8}+\frac{1}{24}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Reduce the fraction \frac{4}{96} to lowest terms by extracting and canceling out 4.
\frac{9}{24}+\frac{1}{24}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Least common multiple of 8 and 24 is 24. Convert \frac{3}{8} and \frac{1}{24} to fractions with denominator 24.
\frac{9+1}{24}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Since \frac{9}{24} and \frac{1}{24} have the same denominator, add them by adding their numerators.
\frac{10}{24}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Add 9 and 1 to get 10.
\frac{5}{12}+\frac{5}{12\times 17}+\frac{3}{17\times 20}
Reduce the fraction \frac{10}{24} to lowest terms by extracting and canceling out 2.
\frac{5}{12}+\frac{5}{204}+\frac{3}{17\times 20}
Multiply 12 and 17 to get 204.
\frac{85}{204}+\frac{5}{204}+\frac{3}{17\times 20}
Least common multiple of 12 and 204 is 204. Convert \frac{5}{12} and \frac{5}{204} to fractions with denominator 204.
\frac{85+5}{204}+\frac{3}{17\times 20}
Since \frac{85}{204} and \frac{5}{204} have the same denominator, add them by adding their numerators.
\frac{90}{204}+\frac{3}{17\times 20}
Add 85 and 5 to get 90.
\frac{15}{34}+\frac{3}{17\times 20}
Reduce the fraction \frac{90}{204} to lowest terms by extracting and canceling out 6.
\frac{15}{34}+\frac{3}{340}
Multiply 17 and 20 to get 340.
\frac{150}{340}+\frac{3}{340}
Least common multiple of 34 and 340 is 340. Convert \frac{15}{34} and \frac{3}{340} to fractions with denominator 340.
\frac{150+3}{340}
Since \frac{150}{340} and \frac{3}{340} have the same denominator, add them by adding their numerators.
\frac{153}{340}
Add 150 and 3 to get 153.
\frac{9}{20}
Reduce the fraction \frac{153}{340} to lowest terms by extracting and canceling out 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}