Evaluate
\frac{\sqrt{15}}{400}\approx 0.009682458
Share
Copied to clipboard
\frac{3}{2\times 2\sqrt{5}\left(-15\right)\left(-\frac{1}{3}\right)\sqrt{48}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{3}{4\sqrt{5}\left(-15\right)\left(-\frac{1}{3}\right)\sqrt{48}}
Multiply 2 and 2 to get 4.
\frac{3}{-60\sqrt{5}\left(-\frac{1}{3}\right)\sqrt{48}}
Multiply 4 and -15 to get -60.
\frac{3}{\frac{-60\left(-1\right)}{3}\sqrt{5}\sqrt{48}}
Express -60\left(-\frac{1}{3}\right) as a single fraction.
\frac{3}{\frac{60}{3}\sqrt{5}\sqrt{48}}
Multiply -60 and -1 to get 60.
\frac{3}{20\sqrt{5}\sqrt{48}}
Divide 60 by 3 to get 20.
\frac{3}{20\sqrt{5}\times 4\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{3}{80\sqrt{5}\sqrt{3}}
Multiply 20 and 4 to get 80.
\frac{3}{80\sqrt{15}}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{15}}{80\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{3}{80\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{3\sqrt{15}}{80\times 15}
The square of \sqrt{15} is 15.
\frac{\sqrt{15}}{5\times 80}
Cancel out 3 in both numerator and denominator.
\frac{\sqrt{15}}{400}
Multiply 5 and 80 to get 400.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}