Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{3\left(2-4i\right)}{\left(2+4i\right)\left(2-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-4i.
\frac{3\left(2-4i\right)}{2^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3\left(2-4i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3\times 2+3\times \left(-4i\right)}{20}
Multiply 3 times 2-4i.
\frac{6-12i}{20}
Do the multiplications in 3\times 2+3\times \left(-4i\right).
\frac{3}{10}-\frac{3}{5}i
Divide 6-12i by 20 to get \frac{3}{10}-\frac{3}{5}i.
Re(\frac{3\left(2-4i\right)}{\left(2+4i\right)\left(2-4i\right)})
Multiply both numerator and denominator of \frac{3}{2+4i} by the complex conjugate of the denominator, 2-4i.
Re(\frac{3\left(2-4i\right)}{2^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{3\left(2-4i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3\times 2+3\times \left(-4i\right)}{20})
Multiply 3 times 2-4i.
Re(\frac{6-12i}{20})
Do the multiplications in 3\times 2+3\times \left(-4i\right).
Re(\frac{3}{10}-\frac{3}{5}i)
Divide 6-12i by 20 to get \frac{3}{10}-\frac{3}{5}i.
\frac{3}{10}
The real part of \frac{3}{10}-\frac{3}{5}i is \frac{3}{10}.