Evaluate
-\frac{251}{95}\approx -2.642105263
Factor
-\frac{251}{95} = -2\frac{61}{95} = -2.642105263157895
Share
Copied to clipboard
\frac{3}{19}-\frac{10+4}{5}
Multiply 2 and 5 to get 10.
\frac{3}{19}-\frac{14}{5}
Add 10 and 4 to get 14.
\frac{15}{95}-\frac{266}{95}
Least common multiple of 19 and 5 is 95. Convert \frac{3}{19} and \frac{14}{5} to fractions with denominator 95.
\frac{15-266}{95}
Since \frac{15}{95} and \frac{266}{95} have the same denominator, subtract them by subtracting their numerators.
-\frac{251}{95}
Subtract 266 from 15 to get -251.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}