Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{19}\left(-6x+\frac{4}{1}\right)=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Anything divided by one gives itself.
\frac{3}{19}\left(-6x+4\right)=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Anything divided by one gives itself.
\frac{3}{19}\left(-6\right)x+\frac{3}{19}\times 4=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Use the distributive property to multiply \frac{3}{19} by -6x+4.
\frac{3\left(-6\right)}{19}x+\frac{3}{19}\times 4=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Express \frac{3}{19}\left(-6\right) as a single fraction.
\frac{-18}{19}x+\frac{3}{19}\times 4=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Multiply 3 and -6 to get -18.
-\frac{18}{19}x+\frac{3}{19}\times 4=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Fraction \frac{-18}{19} can be rewritten as -\frac{18}{19} by extracting the negative sign.
-\frac{18}{19}x+\frac{3\times 4}{19}=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Express \frac{3}{19}\times 4 as a single fraction.
-\frac{18}{19}x+\frac{12}{19}=\frac{1}{5}\left(\frac{2}{1}x+\frac{5}{10}\right)
Multiply 3 and 4 to get 12.
-\frac{18}{19}x+\frac{12}{19}=\frac{1}{5}\left(2x+\frac{5}{10}\right)
Anything divided by one gives itself.
-\frac{18}{19}x+\frac{12}{19}=\frac{1}{5}\left(2x+\frac{1}{2}\right)
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-\frac{18}{19}x+\frac{12}{19}=\frac{1}{5}\times 2x+\frac{1}{5}\times \frac{1}{2}
Use the distributive property to multiply \frac{1}{5} by 2x+\frac{1}{2}.
-\frac{18}{19}x+\frac{12}{19}=\frac{2}{5}x+\frac{1}{5}\times \frac{1}{2}
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
-\frac{18}{19}x+\frac{12}{19}=\frac{2}{5}x+\frac{1\times 1}{5\times 2}
Multiply \frac{1}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{18}{19}x+\frac{12}{19}=\frac{2}{5}x+\frac{1}{10}
Do the multiplications in the fraction \frac{1\times 1}{5\times 2}.
-\frac{18}{19}x+\frac{12}{19}-\frac{2}{5}x=\frac{1}{10}
Subtract \frac{2}{5}x from both sides.
-\frac{128}{95}x+\frac{12}{19}=\frac{1}{10}
Combine -\frac{18}{19}x and -\frac{2}{5}x to get -\frac{128}{95}x.
-\frac{128}{95}x=\frac{1}{10}-\frac{12}{19}
Subtract \frac{12}{19} from both sides.
-\frac{128}{95}x=\frac{19}{190}-\frac{120}{190}
Least common multiple of 10 and 19 is 190. Convert \frac{1}{10} and \frac{12}{19} to fractions with denominator 190.
-\frac{128}{95}x=\frac{19-120}{190}
Since \frac{19}{190} and \frac{120}{190} have the same denominator, subtract them by subtracting their numerators.
-\frac{128}{95}x=-\frac{101}{190}
Subtract 120 from 19 to get -101.
x=-\frac{101}{190}\left(-\frac{95}{128}\right)
Multiply both sides by -\frac{95}{128}, the reciprocal of -\frac{128}{95}.
x=\frac{-101\left(-95\right)}{190\times 128}
Multiply -\frac{101}{190} times -\frac{95}{128} by multiplying numerator times numerator and denominator times denominator.
x=\frac{9595}{24320}
Do the multiplications in the fraction \frac{-101\left(-95\right)}{190\times 128}.
x=\frac{101}{256}
Reduce the fraction \frac{9595}{24320} to lowest terms by extracting and canceling out 95.